Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 6, Pages 818–831
DOI: https://doi.org/10.4213/mzm387
(Mi mzm387)
 

This article is cited in 10 scientific papers (total in 10 papers)

The “Duck Survival” Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables

A. S. Bobkovaa, A. Yu. Kolesovb, N. Kh. Rozovc

a M. V. Lomonosov Moscow State University
b P. G. Demidov Yaroslavl State University
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the system of ordinary differential equations $\dot x = f(x,y)$, $\varepsilon\dot y=g(x,y)$, where $x\in\mathbb R^2$, $y\in\mathbb R$, $0<\varepsilon \ll 1$ and $f,g\in C^\infty$. It is assumed that the equation $g = 0$ determines two different smooth surfaces $y=\varphi(x)$ and $y=\psi(x)$ intersecting generically along a curve $l$. It is further assumed that the trajectories of the corresponding degenerate system lying on the surface $y=\varphi(x)$ are ducks, i.e., as time increases, they intersect the curve $l$ generically and pass from the stable part $\{y=\varphi(x), g'_y<0\}$ of this surface to the unstable part $\{y=\varphi(x), g'_y>0\}$. We seek a solution of the so-called duck survival problem, i.e., give an answer to the following question: what trajectories from the one-parameter family of duck trajectories for $\varepsilon=0$ are the limits as $\varepsilon\to 0$ of some trajectories of the original system.
Received: 22.02.2001
Revised: 05.11.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 6, Pages 749–760
DOI: https://doi.org/10.1023/A:1015812727037
Bibliographic databases:
UDC: 517.926
Language: Russian
Citation: A. S. Bobkova, A. Yu. Kolesov, N. Kh. Rozov, “The “Duck Survival” Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables”, Mat. Zametki, 71:6 (2002), 818–831; Math. Notes, 71:6 (2002), 749–760
Citation in format AMSBIB
\Bibitem{BobKolRoz02}
\by A.~S.~Bobkova, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper The ``Duck Survival'' Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 6
\pages 818--831
\mathnet{http://mi.mathnet.ru/mzm387}
\crossref{https://doi.org/10.4213/mzm387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1933103}
\zmath{https://zbmath.org/?q=an:1087.34034}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 6
\pages 749--760
\crossref{https://doi.org/10.1023/A:1015812727037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176477200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141848562}
Linking options:
  • https://www.mathnet.ru/eng/mzm387
  • https://doi.org/10.4213/mzm387
  • https://www.mathnet.ru/eng/mzm/v71/i6/p818
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :272
    References:82
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024