Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 6, Pages 857–885
DOI: https://doi.org/10.4213/mzm3863
(Mi mzm3863)
 

Topological Splines in Locally Convex Spaces

A. P. Kolesnikov

Peoples Friendship University of Russia
References:
Abstract: In the present paper, we propose a new approximation method in different function spaces. A specific feature of this method is that the choice of the basis approximating elements significantly depends on the topology of the given function space. Basis elements are constructed using the duality theory of locally convex spaces. A method of their exact calculation is presented. The approximating constructions are far-reaching generalizations of the classical Schoenberg splines and, by analogy with the latter, may be called topological splines. In the general case, such a definition of splines is not related to the choice of the grid. In this paper, we give many examples that are useful for practical applications.
Keywords: topological spline, Schoenberg spline, locally convex space, duality theory, quotient space, topological homomorphism, polar, Fréchet space, Radon measure.
Received: 07.10.2005
Revised: 07.07.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 6, Pages 814–840
DOI: https://doi.org/10.1134/S0001434609050241
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: A. P. Kolesnikov, “Topological Splines in Locally Convex Spaces”, Mat. Zametki, 85:6 (2009), 857–885; Math. Notes, 85:6 (2009), 814–840
Citation in format AMSBIB
\Bibitem{Kol09}
\by A.~P.~Kolesnikov
\paper Topological Splines in Locally Convex Spaces
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 6
\pages 857--885
\mathnet{http://mi.mathnet.ru/mzm3863}
\crossref{https://doi.org/10.4213/mzm3863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572839}
\zmath{https://zbmath.org/?q=an:1179.65014}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 6
\pages 814--840
\crossref{https://doi.org/10.1134/S0001434609050241}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949153832}
Linking options:
  • https://www.mathnet.ru/eng/mzm3863
  • https://doi.org/10.4213/mzm3863
  • https://www.mathnet.ru/eng/mzm/v85/i6/p857
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :201
    References:72
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024