Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 4, Pages 606–620
DOI: https://doi.org/10.4213/mzm3853
(Mi mzm3853)
 

This article is cited in 13 scientific papers (total in 13 papers)

Semiclassical Spectrum of the Schrödinger Operator on a Geometric Graph

V. L. Chernysheva, A. I. Shafarevichb

a N. E. Bauman Moscow State Technical University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study how to construct asymptotic solutions of the spectral problem for the Schrödinger equation on a geometric graph. Differential equations on sets of this type arise in the study of processes in systems that can be represented as a collection of one-dimensional continua interacting only via their endpoints (e.g., vibrations of networks formed by strings or rods, steady states of electrons in molecules, or acoustical systems). The interest in Schrödinger equations on networks has increased, in particular, owing to the fact that nanotechnology objects can be described by thin manifolds that can in the limit shrink to graphs (see [1]). The main result of the present paper is an algorithm for constructing quantization rules (generalizing the well-known Bohr–Sommerfeld quantization rules). We illustrate it with a number of examples. We also consider the problem of describing the kernels of the Laplace operator acting on k-forms defined on a network. Finally, we find the asymptotic eigenvalues corresponding to eigenfunctions localized at a vertex of the graph.
Keywords: geometric graph, one-dimensional Schrödinger operator, Sturm–Liouville problem, spectrum, asymptotics, Laplace operator, Betti number.
Received: 23.10.2006
Revised: 01.03.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 4, Pages 542–554
DOI: https://doi.org/10.1134/S0001434607090313
Bibliographic databases:
UDC: 517.923
Language: Russian
Citation: V. L. Chernyshev, A. I. Shafarevich, “Semiclassical Spectrum of the Schrödinger Operator on a Geometric Graph”, Mat. Zametki, 82:4 (2007), 606–620; Math. Notes, 82:4 (2007), 542–554
Citation in format AMSBIB
\Bibitem{CheSha07}
\by V.~L.~Chernyshev, A.~I.~Shafarevich
\paper Semiclassical Spectrum of the Schr\"odinger Operator on a Geometric Graph
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 4
\pages 606--620
\mathnet{http://mi.mathnet.ru/mzm3853}
\crossref{https://doi.org/10.4213/mzm3853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2375797}
\zmath{https://zbmath.org/?q=an:1160.47022}
\elib{https://elibrary.ru/item.asp?id=9575612}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 4
\pages 542--554
\crossref{https://doi.org/10.1134/S0001434607090313}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250565600031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049019968}
Linking options:
  • https://www.mathnet.ru/eng/mzm3853
  • https://doi.org/10.4213/mzm3853
  • https://www.mathnet.ru/eng/mzm/v82/i4/p606
  • This publication is cited in the following 13 articles:
    1. Cacciapuoti C., Fermi D., Posilicano A., “The Semiclassical Limit on a Star-Graph With Kirchhoff Conditions”, Anal. Math. Phys., 11:2 (2021), 45  crossref  mathscinet  isi
    2. V. I. Bezyaev, N. Kh. Sadekov, “On Hemodynamics Problems on Graphs”, J Math Sci, 239:6 (2019), 725  crossref
    3. Allilueva A.I., Shafarevich A.I., “Semiclassical Eigenfunctions of the Schrodinger Operator on a Graph That Are Localized Near a Subgraph”, Russ. J. Math. Phys., 25:2 (2018), 139–147  crossref  mathscinet  isi  scopus
    4. V. I. Bezyaev, N. Kh. Sadekov, “O nekotorykh zadachakh gemodinamiki na grafakh”, Trudy seminara po differentsialnym i funktsionalno-differentsialnym uravneniyam v RUDN pod rukovodstvom A. L. Skubachevskogo, SMFN, 62, RUDN, M., 2016, 5–18  mathnet
    5. Chernyshev V.L., Shafarevich A.I., “Statistics of Gaussian Packets on Metric and Decorated Graphs”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 372:2007 (2014), 20130145  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. M. H. Numan Elsheikh, “Schrödinger Operators on Graphs and Branched Manifolds”, JAMP, 02:02 (2014), 1  crossref
    7. Ivanov A.O. Tuzhilin A.A., “Gromov Minimal Fillings for Finite Metric Spaces”, Publ. Inst. Math.-Beograd, 94:108 (2013), 3–15  crossref  mathscinet  zmath  isi  scopus
    8. A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Sb. Math., 203:5 (2012), 677–726  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. R. Rueckriemen, U. Smilansky, “Trace formulae for quantum graphs with edge potentials”, J. Phys. A, 45:47 (2012), 475205, 14 pp.  crossref  mathscinet  zmath  elib  scopus
    10. A. A. Tolchennikov, V. L. Chernyshev, “Svoistva raspredeleniya gaussovykh paketov na prostranstvennoi seti”, Nauka i obrazovanie, 2011, no. 10, 1–10, MGTU im. N. E. Baumana
    11. V. L. Chernyshev, “Time-dependent Schrödinger equation: Statistics of the distribution of Gaussian packets on a metric graph”, Proc. Steklov Inst. Math., 270 (2010), 246–262  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    12. A. A. Tolchennikov, V. L. Chernyshev, A. I. Shafarevich, “Asimptoticheskie svoistva i klassicheskie dinamicheskie sistemy v kvantovykh zadachakh na singulyarnykh prostranstvakh”, Nelineinaya dinam., 6:3 (2010), 623–638  mathnet
    13. Chernyshev V. L., Shafarevich A. I., “Semiclassical asymptotics and statistical properties of Gaussian packets for the nonstationary Schrödinger equation on a geometric graph”, Russ. J. Math. Phys., 15:1 (2008), 25–34  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:887
    Full-text PDF :356
    References:96
    First page:9
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025