Abstract:
We consider a class of convex bounded subsets of a separable Banach space. This class includes
all convex compact sets as well as some noncompact sets important in applications. For sets in this class, we obtain a simple criterion for the strong CE-property, i.e., the property that the convex closure of any continuous bounded function is a continuous bounded function. Some results are obtained concerning the extension of functions defined at the extreme points of a set in this class to convex or concave functions defined on the entire set with preservation of closedness and continuity. Some applications of the results in quantum information theory are considered.
This publication is cited in the following 4 articles:
M. I. Gomoyunov, N. Yu. Lukoyanov, “On the stability of a procedure for solving a minimax control problem for a positional functional”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 54–69
M. E. Shirokov, “On properties of the space of quantum states and their
application to the construction of entanglement monotones”, Izv. Math., 74:4 (2010), 849–882
V. Yu. Protasov, M. E. Shirokov, “Generalized compactness in linear spaces and its applications”, Sb. Math., 200:5 (2009), 697–722
M. E. Shirokov, “Characterization of convex μ-compact sets”, Russian Math. Surveys, 63:5 (2008), 981–982