Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 3, Pages 411–425
DOI: https://doi.org/10.4213/mzm3843
(Mi mzm3843)
 

This article is cited in 3 scientific papers (total in 3 papers)

An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer–Sobolev Space

B. P. Osilenker

Moscow State University of Civil Engineering
Full-text PDF (547 kB) Citations (3)
References:
Abstract: We study discrete Sobolev spaces with symmetric inner product
$$ \langle f,g\rangle_\alpha =\int_{-1}^1fg\,d\mu_\alpha+M[f(1)g(1)+f(-1)g(-1)]+K[f'(1)g'(1)+f'(-1)g'(-1)], $$
where $M\ge0$, $K\ge0$, and
$$ d\mu_\alpha(x) =\frac{\Gamma(2\alpha+2)} {2^{2\alpha+1}\Gamma^2(\alpha+1)}\,(1-x^2)^\alpha\,dx,\qquad \alpha>-1, $$
is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate
$$ \inf_{a_0,a_1,\dots,a_{N-r}}\biggl\{ \langle P^{(r)}_N,P^{(r)}_N\rangle_\alpha,1\le r\le N-1,P^{(r)}_N(x) =\sum_{j=N-r+1}^{N}a^0_j x^j+\sum_{j=0}^{N-r}a_j x^j\biggr\}, $$
where the $a^0_j$, $j=N-r+1,N-r+2,\dots,N-1,N$, $a^0_N>0$, are fixed numbers, and find the extremal polynomial.
Keywords: algebraic polynomial, discrete Gegenbauer–Sobolev space, Gegenbauer probability measure, extremal problem, Hilbert space, Gram–Schmidt orthogonalization.
Received: 26.05.2006
Revised: 16.01.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 3, Pages 366–379
DOI: https://doi.org/10.1134/S0001434607090106
Bibliographic databases:
UDC: 517.538.3
Language: Russian
Citation: B. P. Osilenker, “An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer–Sobolev Space”, Mat. Zametki, 82:3 (2007), 411–425; Math. Notes, 82:3 (2007), 366–379
Citation in format AMSBIB
\Bibitem{Osi07}
\by B.~P.~Osilenker
\paper An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 3
\pages 411--425
\mathnet{http://mi.mathnet.ru/mzm3843}
\crossref{https://doi.org/10.4213/mzm3843}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2364602}
\zmath{https://zbmath.org/?q=an:1165.46014}
\elib{https://elibrary.ru/item.asp?id=12844037}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 3
\pages 366--379
\crossref{https://doi.org/10.1134/S0001434607090106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250565600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049039532}
Linking options:
  • https://www.mathnet.ru/eng/mzm3843
  • https://doi.org/10.4213/mzm3843
  • https://www.mathnet.ru/eng/mzm/v82/i3/p411
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :207
    References:82
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024