Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 2, Pages 264–272
DOI: https://doi.org/10.4213/mzm3835
(Mi mzm3835)
 

This article is cited in 1 scientific paper (total in 1 paper)

Analog of the Whittaker–Kotelnikov–Shannon Theorem from the Point of View of Fourier–Bessel Analysis

S. S. Platonov

Petrozavodsk State University
Full-text PDF (440 kB) Citations (1)
References:
Abstract: In this paper, we obtain an analog of the Whittaker–Kotelnikov–Shannon theorem on the basis of the harmonic Fourier–Bessel analysis. We construct a new interpolation formula for a class of entire functions of exponential type in which generalized Bessel translations are used instead of the usual translations.
Keywords: harmonic analysis, Whittaker–Kotelnikov–Shannon (sampling) theorem, interpolation formula, entire function of exponential type, Bessel function, Hilbert space.
Received: 06.06.2006
Revised: 08.02.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 2, Pages 238–245
DOI: https://doi.org/10.1134/S0001434608010252
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. S. Platonov, “Analog of the Whittaker–Kotelnikov–Shannon Theorem from the Point of View of Fourier–Bessel Analysis”, Mat. Zametki, 83:2 (2008), 264–272; Math. Notes, 83:2 (2008), 238–245
Citation in format AMSBIB
\Bibitem{Pla08}
\by S.~S.~Platonov
\paper Analog of the Whittaker--Kotelnikov--Shannon Theorem from the Point of View of Fourier--Bessel Analysis
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 2
\pages 264--272
\mathnet{http://mi.mathnet.ru/mzm3835}
\crossref{https://doi.org/10.4213/mzm3835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431585}
\zmath{https://zbmath.org/?q=an:1150.94006}
\elib{https://elibrary.ru/item.asp?id=9940288}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 2
\pages 238--245
\crossref{https://doi.org/10.1134/S0001434608010252}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849116978}
Linking options:
  • https://www.mathnet.ru/eng/mzm3835
  • https://doi.org/10.4213/mzm3835
  • https://www.mathnet.ru/eng/mzm/v83/i2/p264
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:965
    Full-text PDF :318
    References:89
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024