Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 5, Pages 718–728
DOI: https://doi.org/10.4213/mzm3829
(Mi mzm3829)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0<p<\infty$

S. G. Pribegin

Odessa National Maritime University
Full-text PDF (461 kB) Citations (1)
References:
Abstract: Suppose that $H^p(E^+_{2n})$ is the Hardy space for the first octant
$$ E_{2n}^+=\{z\in\mathbb C^n:\operatorname{Im}z_j>0,\,j=1,\dots,n\} $$
and $P^l_\varepsilon(f,x)$, $l>0$, is the generalized Abel–Poisson means of a function $f\in H^p(E^+_{2n})$. In this paper, we prove the inequalities
$$ C_1(l,p)\widetilde\omega_l(\varepsilon,f)_p \le\|f(x)-P^l_\varepsilon(f,x)\|_p \le C_2(l,p)\omega_l(\varepsilon,f)_p, $$
where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are the integral moduli of continuity of $l$th order. For $n=1$ and an integer $l$, this result was obtained by Soljanik.
Keywords: Fourier integral, Hardy space, generalized Abel–Poisson mean, modulus of continuity, holomorphic function.
Received: 23.03.2006
Revised: 11.04.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 5, Pages 643–652
DOI: https://doi.org/10.1134/S0001434607110077
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. G. Pribegin, “A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0<p<\infty$”, Mat. Zametki, 82:5 (2007), 718–728; Math. Notes, 82:5 (2007), 643–652
Citation in format AMSBIB
\Bibitem{Pri07}
\by S.~G.~Pribegin
\paper A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0<p<\infty$
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 5
\pages 718--728
\mathnet{http://mi.mathnet.ru/mzm3829}
\crossref{https://doi.org/10.4213/mzm3829}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399951}
\zmath{https://zbmath.org/?q=an:1142.42008}
\elib{https://elibrary.ru/item.asp?id=12844049}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 5
\pages 643--652
\crossref{https://doi.org/10.1134/S0001434607110077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349190279}
Linking options:
  • https://www.mathnet.ru/eng/mzm3829
  • https://doi.org/10.4213/mzm3829
  • https://www.mathnet.ru/eng/mzm/v82/i5/p718
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :200
    References:46
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024