|
This article is cited in 1 scientific paper (total in 1 paper)
A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0<p<\infty$
S. G. Pribegin Odessa National Maritime University
Abstract:
Suppose that $H^p(E^+_{2n})$ is the Hardy space for the first octant
$$
E_{2n}^+=\{z\in\mathbb C^n:\operatorname{Im}z_j>0,\,j=1,\dots,n\}
$$
and $P^l_\varepsilon(f,x)$, $l>0$, is the generalized Abel–Poisson means of a function $f\in H^p(E^+_{2n})$. In this paper, we prove the inequalities
$$
C_1(l,p)\widetilde\omega_l(\varepsilon,f)_p
\le\|f(x)-P^l_\varepsilon(f,x)\|_p
\le C_2(l,p)\omega_l(\varepsilon,f)_p,
$$
where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are the integral moduli of continuity of $l$th order. For $n=1$ and an integer $l$, this result was obtained by Soljanik.
Keywords:
Fourier integral, Hardy space, generalized Abel–Poisson mean, modulus of continuity, holomorphic function.
Received: 23.03.2006 Revised: 11.04.2007
Citation:
S. G. Pribegin, “A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0<p<\infty$”, Mat. Zametki, 82:5 (2007), 718–728; Math. Notes, 82:5 (2007), 643–652
Linking options:
https://www.mathnet.ru/eng/mzm3829https://doi.org/10.4213/mzm3829 https://www.mathnet.ru/eng/mzm/v82/i5/p718
|
Statistics & downloads: |
Abstract page: | 512 | Full-text PDF : | 200 | References: | 46 | First page: | 3 |
|