Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 4, Pages 560–577
DOI: https://doi.org/10.4213/mzm3825
(Mi mzm3825)
 

This article is cited in 15 scientific papers (total in 15 papers)

Existence of Global Solutions to Multidimensional Equations for Bingham Fluids

A. E. Mamontov

M. A. Lavrent'ev Institute of Hydrodynamics
References:
Abstract: We consider equations describing the multidimensional motion of compressible viscous (non-Newtonian) Bingham-type fluids, i.e., fluids with multivalued function relating the stresses to the tensor of strain rates. We prove the global existence theorem in time and in the initial data for the first initial boundary-value problem corresponding to flows in a bounded domain in the class of “weak” generalized solutions. In this case, we admit an anisotropic relation between the stress and strain rate tensors and study admissible relations of this kind in detail.
Keywords: compressible viscous (non-Newtonian) Bingham-type fluid, global existence theorem, initial boundary-value problem, weak generalized solution, Orlicz space.
Received: 24.11.2006
Revised: 11.04.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 4, Pages 501–517
DOI: https://doi.org/10.1134/S000143460709026X
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: A. E. Mamontov, “Existence of Global Solutions to Multidimensional Equations for Bingham Fluids”, Mat. Zametki, 82:4 (2007), 560–577; Math. Notes, 82:4 (2007), 501–517
Citation in format AMSBIB
\Bibitem{Mam07}
\by A.~E.~Mamontov
\paper Existence of Global Solutions to Multidimensional Equations for Bingham Fluids
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 4
\pages 560--577
\mathnet{http://mi.mathnet.ru/mzm3825}
\crossref{https://doi.org/10.4213/mzm3825}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2375792}
\zmath{https://zbmath.org/?q=an:1147.76004}
\elib{https://elibrary.ru/item.asp?id=9575607}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 4
\pages 501--517
\crossref{https://doi.org/10.1134/S000143460709026X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250565600026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36048994318}
Linking options:
  • https://www.mathnet.ru/eng/mzm3825
  • https://doi.org/10.4213/mzm3825
  • https://www.mathnet.ru/eng/mzm/v82/i4/p560
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024