Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 5, Pages 742–750
DOI: https://doi.org/10.4213/mzm382
(Mi mzm382)
 

This article is cited in 3 scientific papers (total in 3 papers)

Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability

I. P. Pavlotsky, M. Strianese

Università degli Studi di Napoli Federico II
Full-text PDF (269 kB) Citations (3)
References:
Abstract: In [1–3] an extension of the solution of the equation $a(x,\dot x)\ddot x=1$, $x\in \mathbb R$, $a(x,\dot x)\in C^1$, to the singular set $S=\{(x,y)\in \mathbb R^2:a(x,y)=0\}$, $y=\dot x$, is defined in terms of the first integral. In this case all stationary points and all local extrema of the integral curve $x(y)$ such that the function $x(y)$ has a derivative at the extreme point belong to a set $S\cup Y$, where $Y$ is the line $y=0$. We study the local stability of local extrema of different types in the families of equations $[a(x,y)+\varepsilon b(x,y)]\dot y=1$, $b(x,y)\in C^1$ for $|\varepsilon |$ small enough. Introduce the notation $S^*=\{(x,y)\in \mathbb R^2:a(x,y)+\varepsilon b(x,y)=0\}$. By abuse of language, we talk about the stability of local extrema when $S$ is replaced with $S^*$. Some sufficient conditions for stability and instability are found.
Received: 30.05.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 5, Pages 676–683
DOI: https://doi.org/10.1023/A:1015892022494
Bibliographic databases:
UDC: 517
Language: Russian
Citation: I. P. Pavlotsky, M. Strianese, “Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability”, Mat. Zametki, 71:5 (2002), 742–750; Math. Notes, 71:5 (2002), 676–683
Citation in format AMSBIB
\Bibitem{PavStr02}
\by I.~P.~Pavlotsky, M.~Strianese
\paper Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 5
\pages 742--750
\mathnet{http://mi.mathnet.ru/mzm382}
\crossref{https://doi.org/10.4213/mzm382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936198}
\zmath{https://zbmath.org/?q=an:1055.34101}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 5
\pages 676--683
\crossref{https://doi.org/10.1023/A:1015892022494}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176477200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737010}
Linking options:
  • https://www.mathnet.ru/eng/mzm382
  • https://doi.org/10.4213/mzm382
  • https://www.mathnet.ru/eng/mzm/v71/i5/p742
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024