Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 4, Pages 495–500
DOI: https://doi.org/10.4213/mzm3810
(Mi mzm3810)
 

This article is cited in 14 scientific papers (total in 14 papers)

On Periodic Groups of Odd Period n1003

V. S. Atabekyan

Yerevan State University
References:
Abstract: In the paper, using the Adyan–Lysenok theorem claiming that, for any odd number n1003, there is an infinite group each of whose proper subgroups is contained in a cyclic subgroup of order n, it is proved that the set of groups with this property has the cardinality of the continuum (for a given n). Further, it is proved that, for mk2 and for any odd n1003, the m-generated free n-periodic group is residually both a group of the above type and a k-generated free n-periodic group, and it does not satisfy the ascending and descending chain conditions for normal subgroups either.
Keywords: periodic group, simple group, group of bounded period, variety of groups of a given exponent, Adyan–Lysenok theorem.
Received: 03.02.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 4, Pages 443–447
DOI: https://doi.org/10.1134/S0001434607090179
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. S. Atabekyan, “On Periodic Groups of Odd Period n1003”, Mat. Zametki, 82:4 (2007), 495–500; Math. Notes, 82:4 (2007), 443–447
Citation in format AMSBIB
\Bibitem{Ata07}
\by V.~S.~Atabekyan
\paper On Periodic Groups of Odd Period $n\ge1003$
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 4
\pages 495--500
\mathnet{http://mi.mathnet.ru/mzm3810}
\crossref{https://doi.org/10.4213/mzm3810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2375783}
\zmath{https://zbmath.org/?q=an:1152.20034}
\elib{https://elibrary.ru/item.asp?id=9575598}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 4
\pages 443--447
\crossref{https://doi.org/10.1134/S0001434607090179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250565600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049017701}
Linking options:
  • https://www.mathnet.ru/eng/mzm3810
  • https://doi.org/10.4213/mzm3810
  • https://www.mathnet.ru/eng/mzm/v82/i4/p495
  • This publication is cited in the following 14 articles:
    1. Carsten Feldkamp, Steffen Kionke, “On upper bounds for the first ℓ²-Betti number”, Proc. Amer. Math. Soc., 2023  crossref
    2. S. I. Adian, V. S. Atabekyan, “$C^*$-Simplicity of $n$-Periodic Products”, Math. Notes, 99:5 (2016), 631–635  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. S. Atabekyan, “Automorphism groups and endomorphism semigroups of groups $B(m,n)$”, Algebra and Logic, 54:1 (2015), 58–62  mathnet  crossref  crossref  mathscinet  isi
    4. V. S. Atabekyan, “Splitting Automorphisms of Order $p^k$ of Free Burnside Groups are Inner”, Math. Notes, 95:5 (2014), 586–589  mathnet  crossref  crossref  mathscinet  isi  elib
    5. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Sb. Math., 204:2 (2013), 182–189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Atabekyan V.S., “The Groups of Automorphisms Are Complete for Free Burnside Groups of Odd Exponents N >= 1003”, Int. J. Algebr. Comput., 23:6 (2013), 1485–1496  crossref  mathscinet  zmath  isi  elib  scopus
    7. V. S. Atabekyan, “Normal automorphisms of free Burnside groups”, Izv. Math., 75:2 (2011), 223–237  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2011, no. 3, 62–64  mathnet
    9. V. S. Atabekyan, “Nonunitarizable Periodic Groups”, Math. Notes, 87:6 (2010), 908–911  mathnet  crossref  crossref  mathscinet  isi
    10. S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Atabekyan V.S., “Non-$\phi$-admissible normal subgroups of free Burnside groups”, J. Contemp. Math. Anal., 45:2 (2010), 112–122  crossref  mathscinet  zmath  isi  elib  scopus
    12. H. R. Rostami, “Non-unitarizable groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 3, 40–43  mathnet
    13. V. S. Atabekyan, “The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$”, J. Math. Sci., 166:6 (2010), 691–703  mathnet  crossref  mathscinet  elib
    14. Atabekyan V. S., “Adian-Lisenok groups and (U) condition”, J. Contemp. Math. Anal., 43:5 (2008), 265–273  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:871
    Full-text PDF :228
    References:97
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025