Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 4, Pages 495–500
DOI: https://doi.org/10.4213/mzm3810
(Mi mzm3810)
 

This article is cited in 14 scientific papers (total in 14 papers)

On Periodic Groups of Odd Period $n\ge1003$

V. S. Atabekyan

Yerevan State University
References:
Abstract: In the paper, using the Adyan–Lysenok theorem claiming that, for any odd number $n\ge1003$, there is an infinite group each of whose proper subgroups is contained in a cyclic subgroup of order $n$, it is proved that the set of groups with this property has the cardinality of the continuum (for a given $n$). Further, it is proved that, for $m\ge k\ge2$ and for any odd $n\ge1003$, the $m$-generated free $n$-periodic group is residually both a group of the above type and a $k$-generated free $n$-periodic group, and it does not satisfy the ascending and descending chain conditions for normal subgroups either.
Keywords: periodic group, simple group, group of bounded period, variety of groups of a given exponent, Adyan–Lysenok theorem.
Received: 03.02.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 4, Pages 443–447
DOI: https://doi.org/10.1134/S0001434607090179
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. S. Atabekyan, “On Periodic Groups of Odd Period $n\ge1003$”, Mat. Zametki, 82:4 (2007), 495–500; Math. Notes, 82:4 (2007), 443–447
Citation in format AMSBIB
\Bibitem{Ata07}
\by V.~S.~Atabekyan
\paper On Periodic Groups of Odd Period $n\ge1003$
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 4
\pages 495--500
\mathnet{http://mi.mathnet.ru/mzm3810}
\crossref{https://doi.org/10.4213/mzm3810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2375783}
\zmath{https://zbmath.org/?q=an:1152.20034}
\elib{https://elibrary.ru/item.asp?id=9575598}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 4
\pages 443--447
\crossref{https://doi.org/10.1134/S0001434607090179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250565600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049017701}
Linking options:
  • https://www.mathnet.ru/eng/mzm3810
  • https://doi.org/10.4213/mzm3810
  • https://www.mathnet.ru/eng/mzm/v82/i4/p495
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:821
    Full-text PDF :218
    References:88
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024