Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 2, Pages 247–261
DOI: https://doi.org/10.4213/mzm3797
(Mi mzm3797)
 

This article is cited in 22 scientific papers (total in 22 papers)

Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: We study best M-term trigonometric approximations and best orthogonal trigonometric approximations for the classes Bp,θr and Wp,αr of periodic functions of several variables in the uniform metric.
Keywords: best trigonometric approximation, the classes Bp,θr and Wp,αr of periodic functions, Minkowski's inequality, Hölder's inequality, Vallée-Poussin kernel.
Received: 28.03.2005
Revised: 17.11.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 2, Pages 216–228
DOI: https://doi.org/10.1134/S0001434607070279
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. S. Romanyuk, “Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric”, Mat. Zametki, 82:2 (2007), 247–261; Math. Notes, 82:2 (2007), 216–228
Citation in format AMSBIB
\Bibitem{Rom07}
\by A.~S.~Romanyuk
\paper Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 2
\pages 247--261
\mathnet{http://mi.mathnet.ru/mzm3797}
\crossref{https://doi.org/10.4213/mzm3797}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2374903}
\elib{https://elibrary.ru/item.asp?id=12844020}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 2
\pages 216--228
\crossref{https://doi.org/10.1134/S0001434607070279}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249410700027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58749105483}
Linking options:
  • https://www.mathnet.ru/eng/mzm3797
  • https://doi.org/10.4213/mzm3797
  • https://www.mathnet.ru/eng/mzm/v82/i2/p247
  • This publication is cited in the following 22 articles:
    1. G. Akishev, “Estimates of M–term approximations of functions of several variables in the Lorentz space by a constructive method”, Eurasian Math. J., 15:2 (2024), 8–32  mathnet  crossref
    2. Svitlana Hembars'ka, Ihor Romanyuk, Oksana Fedunyk-Yaremchuk, “Characteristics of the linear and nonlinear approximations of the Nikol'skii-Besov-type classes of periodic functions of several variables”, UMB, 20:2 (2023), 161  crossref
    3. G. A. Akishev, “O nailuchshikh M-chlennykh priblizheniyakh funktsii klassa Nikolskogo – Besova v prostranstve Lorentsa”, Tr. IMM UrO RAN, 28, no. 1, 2022, 7–26  mathnet  crossref  mathscinet  elib
    4. S. B. Hembars'ka, P. V. Zaderei, “Naikraschі ortogonalnі trigonometrichnі nablizhennya klasіv tipu Nіkolskogo – Bєsova perіodichnikh funktsіi u prostorі
      B
      ∞ ,1”, Ukr. Mat. Zhurn., 74:6 (2022), 772  crossref
    5. A. S. Romanyuk, S. Ya. Yanchenko, “Approximation of the Classes of Periodic Functions of One and Many Variables from the Nikol'skii–Besov and Sobolev Spaces”, Ukr Math J, 74:6 (2022), 967  crossref
    6. S. B. Hembars'ka, P. V. Zaderei, “Best Orthogonal Trigonometric Approximations of the Nikol'skii–Besov-Type Classes of Periodic Functions in the Space B∞,1”, Ukr Math J, 74:6 (2022), 883  crossref
    7. A. S. Romanyuk, S. Ya. Yanchenko, “Nablizhennya klasіv perіodichnikh funktsіi odnієï ta bagatokh zmіnnikh іz prostorіv Nіkolskogo – Bєsova ta Sobolєva”, Ukr. Mat. Zhurn., 74:6 (2022), 844  crossref
    8. V. K. Nguyen, V. D. Nguyen, “Best n-Term Approximation of Diagonal Operators and Application to Function Spaces with Mixed Smoothness”, Anal Math, 48:4 (2022), 1127  crossref
    9. Romanyuk A.S. Romanyuk V.S., “Estimation of Some Approximating Characteristics of the Classes of Periodic Functions of One and Many Variables”, Ukr. Math. J., 71:8 (2020), 1257–1272  crossref  mathscinet  isi  scopus
    10. Yanchenko S.Ya. Radchenko O.Ya., “Approximating Characteristics of the Nikol'Skii-Besov Classes (S1,Theta B)-B-R(R-D)”, Ukr. Math. J., 71:10 (2020), 1608–1626  crossref  mathscinet  isi
    11. Tetiana A. Stepanyuk, Trigonometric Sums and Their Applications, 2020, 273  crossref
    12. Mykhailo V. Hembars'kyi, Svitlana B. Hembars'ka, “Approximate characteristics of the classes Bp,θΩ of periodic functions of one variable and many ones”, J Math Sci, 242:6 (2019), 820  crossref
    13. Mykhailo Hembars'kyi, Svitlana Hembars'ka, “Approximate characteristics of the classes \(B_{p,\theta}^{\Omega}\) of periodic functions of one variable and many ones”, UMB, 16:1 (2019), 88  crossref
    14. D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Proc. Steklov Inst. Math., 293 (2016), 2–36  mathnet  crossref  crossref  mathscinet  isi  elib
    15. Shvai K.V., “the Best M-Term Trigonometric Approximations of Classes of (Psi,Beta)-Differentiable Periodic Multivariate Functions in the Space l-Beta,1(Psi)”, J. Numer. Appl. Math., 2:122 (2016), 83–91  isi
    16. Shkapa V.V., “Best Trigonometric and Bilinear Approximations for the Classes of (, )-Differentiable Periodic Functions”, Ukr. Math. J., 68:3 (2016), 433–447  crossref  mathscinet  isi  scopus
    17. Serdyuk A.S., Stepanyuk T.A., “Order Estimates For the Best Orthogonal Trigonometric Approximations of the Classes of Convolutions of Periodic Functions of Low Smoothness”, Ukr. Math. J., 67:7 (2015), 1038–1061  crossref  mathscinet  zmath  isi  scopus
    18. Sergei A. Stasyuk, “Approximations of the classes MB p,θ r of periodic functions of several variables by polynomials according to the Haar system”, J Math Sci, 210:1 (2015), 76  crossref
    19. A.S. Serdyuk, T.A. Stepaniuk, “Estimates of the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of not high smoothness”, Dopov. Nac. akad. nauk Ukr., 2015, no. 7, 13  crossref
    20. D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Proc. Steklov Inst. Math., 284 (2014), 2–31  mathnet  crossref  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1174
    Full-text PDF :495
    References:182
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025