Abstract:
The main result of this paper is the proof of a nonexistence theorem on solutions with nonzero real singularities for the problem of scattering theory for the Schrödinger operator with magnetic and electric potentials.
Keywords:
spectrum of the Schrödinger operator, Laplacian, scattering theory, electric potential, magnetic field, real singularity, resolvent equation.
Citation:
Kh. Kh. Murtazin, A. N. Galimov, “The Spectrum and the Scattering Problem for the Schrödinger Operator in Magnetic Field”, Mat. Zametki, 83:3 (2008), 402–416; Math. Notes, 83:3 (2008), 364–377
\Bibitem{MurGal08}
\by Kh.~Kh.~Murtazin, A.~N.~Galimov
\paper The Spectrum and the Scattering Problem for the Schr\"odinger Operator in Magnetic Field
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 3
\pages 402--416
\mathnet{http://mi.mathnet.ru/mzm3773}
\crossref{https://doi.org/10.4213/mzm3773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423537}
\zmath{https://zbmath.org/?q=an:1153.81012}
\elib{https://elibrary.ru/item.asp?id=10019496}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 3
\pages 364--377
\crossref{https://doi.org/10.1134/S0001434608030073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255998600007}
\elib{https://elibrary.ru/item.asp?id=13594549}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749120506}
Linking options:
https://www.mathnet.ru/eng/mzm3773
https://doi.org/10.4213/mzm3773
https://www.mathnet.ru/eng/mzm/v83/i3/p402
This publication is cited in the following 3 articles:
Eyvazov E.H., “on the Properties of the Resolvent of Two-Dimensional Magnetic Schrodinger Operator”, Azerbaijan J. Math., 5:1 (2015), 13–28
A. R. Aliev, E. H. Eyvazov, “The resolvent equation of the one-dimensional Schrödinger operator on the whole axis”, Siberian Math. J., 53:6 (2012), 957–964