Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 3, Pages 333–349
DOI: https://doi.org/10.4213/mzm3772
(Mi mzm3772)
 

This article is cited in 24 scientific papers (total in 24 papers)

Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold

Ya. A. Butkoab

a M. V. Lomonosov Moscow State University
b N. E. Bauman Moscow State Technical University
References:
Abstract: We obtain representations for the solution of the Cauchy–Dirichlet problem for the diffusion equation with drift in a domain on a compact Riemannian manifold as limits of integrals over the Cartesian powers of the domain; the integrands are elementary functions depending on the geometric characteristics of the manifold, the coefficients of the equation, and the initial data. It is natural to call such representations Feynman formulas. Besides, we obtain representations for the solution of the Cauchy–Dirichlet problem for the diffusion equation with drift in a domain on a compact Riemannian manifold as functional integrals with respect to Weizsäcker–Smolyanov surface measures and the restriction of the Wiener measure to the set of trajectories in the domain; such a restriction of the measure corresponds to Brownian motion in a domain with absorbing boundary. In the proof, we use Chernoff's theorem and asymptotic estimates obtained in the papers of Smolyanov, Weizsäcker, and their coauthors.
Keywords: diffusion with drift, Feynman formula, functional integral, Riemannian manifold, Cauchy–Dirichlet problem, Weizsäcker–Smolyanov surface measure, Wiener measure, path integral, Feynman–Kac–Itô formula.
Received: 28.06.2005
Revised: 15.03.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 3, Pages 301–316
DOI: https://doi.org/10.1134/S0001434608030024
Bibliographic databases:
UDC: 517.987.4
Language: Russian
Citation: Ya. A. Butko, “Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold”, Mat. Zametki, 83:3 (2008), 333–349; Math. Notes, 83:3 (2008), 301–316
Citation in format AMSBIB
\Bibitem{But08}
\by Ya.~A.~Butko
\paper Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 3
\pages 333--349
\mathnet{http://mi.mathnet.ru/mzm3772}
\crossref{https://doi.org/10.4213/mzm3772}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423533}
\zmath{https://zbmath.org/?q=an:1155.58302}
\elib{https://elibrary.ru/item.asp?id=13571594}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 3
\pages 301--316
\crossref{https://doi.org/10.1134/S0001434608030024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255998600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749123894}
Linking options:
  • https://www.mathnet.ru/eng/mzm3772
  • https://doi.org/10.4213/mzm3772
  • https://www.mathnet.ru/eng/mzm/v83/i3/p333
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:793
    Full-text PDF :238
    References:65
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024