|
This article is cited in 2 scientific papers (total in 2 papers)
Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
V. L. Kurakin
Abstract:
For a polynomial algebra $A=R[X]$ or $R[X,X^{-1}]$ in several variables over a commutative ring $R$ with a Hopf algebra structure $(A,m,e,\Delta,\varepsilon,S)$ the existence of the dual Hopf algebra $(A^\circ,\Delta ^\circ,\varepsilon ^\circ,m^\circ,e^\circ,S^\circ)$ is proved.
Received: 02.10.2001
Citation:
V. L. Kurakin, “Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring”, Mat. Zametki, 71:5 (2002), 677–685; Math. Notes, 71:5 (2002), 617–623
Linking options:
https://www.mathnet.ru/eng/mzm376https://doi.org/10.4213/mzm376 https://www.mathnet.ru/eng/mzm/v71/i5/p677
|
Statistics & downloads: |
Abstract page: | 470 | Full-text PDF : | 220 | References: | 91 | First page: | 2 |
|