Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 6, Pages 939–947
DOI: https://doi.org/10.4213/mzm3744
(Mi mzm3744)
 

This article is cited in 7 scientific papers (total in 7 papers)

Random AA-Permutations: Convergence to a Poisson Process

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (486 kB) Citations (7)
References:
Abstract: Suppose that SnSn is the permutation group of degree nn, AA is a subset of the set of natural numbers N, and Tn=Tn(A) is the set of all permutations from Sn whose cycle lengths belong to the set A. Permutations from Tn are usually called A-permutations. We consider a wide class of sets A of positive asymptotic density. Suppose that ζmn is the number of cycles of length m of a random permutation uniformly distributed on Tn. It is shown in this paper that the finite-dimensional distributions of the random process {ζmn,mA} weakly converge as n to the finite-dimensional distributions of a Poisson process on A.
Keywords: random permutation, Poisson process, permutation group, permutation cycle, total variance distance, normal distribution.
Received: 24.11.2005
Revised: 19.09.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 6, Pages 840–846
DOI: https://doi.org/10.1134/S0001434607050318
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. L. Yakymiv, “Random A-Permutations: Convergence to a Poisson Process”, Mat. Zametki, 81:6 (2007), 939–947; Math. Notes, 81:6 (2007), 840–846
Citation in format AMSBIB
\Bibitem{Yak07}
\by A.~L.~Yakymiv
\paper Random $A$-Permutations: Convergence to a Poisson Process
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 6
\pages 939--947
\mathnet{http://mi.mathnet.ru/mzm3744}
\crossref{https://doi.org/10.4213/mzm3744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2349109}
\zmath{https://zbmath.org/?q=an:1134.60008}
\elib{https://elibrary.ru/item.asp?id=9511617}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 6
\pages 840--846
\crossref{https://doi.org/10.1134/S0001434607050318}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500031}
\elib{https://elibrary.ru/item.asp?id=13550855}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547254571}
Linking options:
  • https://www.mathnet.ru/eng/mzm3744
  • https://doi.org/10.4213/mzm3744
  • https://www.mathnet.ru/eng/mzm/v81/i6/p939
  • This publication is cited in the following 7 articles:
    1. Dor Elboim, Ofir Gorodetsky, “Multiplicative arithmetic functions and the generalized Ewens measure”, Isr. J. Math., 2024  crossref
    2. Betz V., Schaefer H., Zeindler D., “Random Permutations Without Macroscopic Cycles”, Ann. Appl. Probab., 30:3 (2020), 1484–1505  crossref  mathscinet  isi
    3. Elboim D., Peled R., “Limit Distributions For Euclidean Random Permutations”, Commun. Math. Phys., 369:2 (2019), 457–522  crossref  mathscinet  isi  scopus
    4. Betz V., Schaefer H., “The Number of Cycles in Random Permutations Without Long Cycles Is Asymptotically Gaussian”, ALEA-Latin Am. J. Probab. Math. Stat., 14:1 (2017), 427–444  crossref  mathscinet  zmath  isi
    5. A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random A-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275  mathnet  crossref  crossref  mathscinet  zmath  elib  elib
    6. Benaych-Georges F., “Cycles of Free Words in Several Independent Random Permutations with Restricted Cycle Lengths”, Indiana Univ. Math. J., 59:5 (2010), 1547–1586  crossref  mathscinet  zmath  isi  elib  scopus
    7. A. L. Yakymiv, “Limit Theorem for the Middle Members of Ordered Cycle Lengths in Random A-Permutations”, Theory Probab. Appl., 54:1 (2010), 114–128  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :253
    References:73
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025