Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 6, Pages 893–903
DOI: https://doi.org/10.4213/mzm3739
(Mi mzm3739)
 

This article is cited in 10 scientific papers (total in 10 papers)

Bessel Sequences as Projections of Orthogonal Systems

S. Ya. Novikov

Samara State University
References:
Abstract: We prove generalizations of the Schur and Olevskii theorems on the continuation of systems of functions from an interval $I$ to orthogonal systems on an interval $J$, $I\subset J$. Only Bessel systems in $L^2(I)$ are projections of orthogonal systems from the wider space $L^2(J)$. This fact allows us to use a certain method for transferring the classical theorems on the almost everywhere convergence of orthogonal series (the Menshov–Rademacher, Paley–Zygmund, and Garcia theorems) to series in Bessel systems. The projection of a complete orthogonal system from $L^2(J)$ onto $L^2(I)$ is a tight frame, but not a basis.
Keywords: Bessel sequence, orthogonal system, tight frame, complex Hilbert space, Schur criterion, Menshov–Rademacher theorem, Paley–Zygmund theorem, Gram matrix.
Received: 20.03.2006
Revised: 26.09.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 6, Pages 800–809
DOI: https://doi.org/10.1134/S0001434607050276
Bibliographic databases:
UDC: 517.51+517.98
Language: Russian
Citation: S. Ya. Novikov, “Bessel Sequences as Projections of Orthogonal Systems”, Mat. Zametki, 81:6 (2007), 893–903; Math. Notes, 81:6 (2007), 800–809
Citation in format AMSBIB
\Bibitem{Nov07}
\by S.~Ya.~Novikov
\paper Bessel Sequences as Projections of Orthogonal Systems
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 6
\pages 893--903
\mathnet{http://mi.mathnet.ru/mzm3739}
\crossref{https://doi.org/10.4213/mzm3739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2349105}
\zmath{https://zbmath.org/?q=an:1152.42010}
\elib{https://elibrary.ru/item.asp?id=9511613}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 6
\pages 800--809
\crossref{https://doi.org/10.1134/S0001434607050276}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500027}
\elib{https://elibrary.ru/item.asp?id=13557364}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547288935}
Linking options:
  • https://www.mathnet.ru/eng/mzm3739
  • https://doi.org/10.4213/mzm3739
  • https://www.mathnet.ru/eng/mzm/v81/i6/p893
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:507
    Full-text PDF :220
    References:71
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024