Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 6, Pages 855–866
DOI: https://doi.org/10.4213/mzm3736
(Mi mzm3736)
 

This article is cited in 42 scientific papers (total in 42 papers)

Inverse Spectral Problem for Integro-Differential Operators

Yu. V. Kuryshova

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: In this paper, we study the inverse spectral problem on a finite interval for the integro-differential operator $\ell$ which is the perturbation of the Sturm–Liouville operator by the Volterra integral operator. The potential $q$ belongs to $L_2[0,\pi]$ and the kernel of the integral perturbation is integrable in its domain of definition. We obtain a local solution of the inverse reconstruction problem for the potential $q$, given the kernel of the integral perturbation, and prove the stability of this solution. For the spectral data we take the spectra of two operators given by the expression for $\ell$ and by two pairs of boundary conditions coinciding at one of the finite points.
Keywords: integro-differential operator, inverse spectral problem, nonlinear integral equation, Sturm–Liouville operator, Volterra integral operator, inverse problem, Cauchy–Bunyakovskii inequality.
Received: 05.08.2005
Revised: 05.12.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 6, Pages 767–777
DOI: https://doi.org/10.1134/S0001434607050240
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: Yu. V. Kuryshova, “Inverse Spectral Problem for Integro-Differential Operators”, Mat. Zametki, 81:6 (2007), 855–866; Math. Notes, 81:6 (2007), 767–777
Citation in format AMSBIB
\Bibitem{Kur07}
\by Yu.~V.~Kuryshova
\paper Inverse Spectral Problem for Integro-Differential Operators
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 6
\pages 855--866
\mathnet{http://mi.mathnet.ru/mzm3736}
\crossref{https://doi.org/10.4213/mzm3736}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2349102}
\zmath{https://zbmath.org/?q=an:1142.45006}
\elib{https://elibrary.ru/item.asp?id=9511610}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 6
\pages 767--777
\crossref{https://doi.org/10.1134/S0001434607050240}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500024}
\elib{https://elibrary.ru/item.asp?id=13554844}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547267210}
Linking options:
  • https://www.mathnet.ru/eng/mzm3736
  • https://doi.org/10.4213/mzm3736
  • https://www.mathnet.ru/eng/mzm/v81/i6/p855
  • This publication is cited in the following 42 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:621
    Full-text PDF :246
    References:74
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024