|
On the Brauer Group of a Two-Dimensional Local Field
M. A. Dubovitskaya Institute for the History of Science and Technilogy
Abstract:
The two-dimensional local field $K=F_q((u))((t))$, $\operatorname{char}K=p$, and its Brauer group $\operatorname{Br}(K)$ are considered. It is proved that, if $L=K(x)$ is the field extension for which we have $x^p-x=ut^{-p}=:h$, then the condition that $(y,f\,|\,h]_K=0$ for any $y\in K$ is equivalent to the condition $f\in\operatorname{Im}(\operatorname{Nm}(L^*))$.
Keywords:
two-dimensional local field, Brauer group, field extension, local field.
Received: 27.12.2005
Citation:
M. A. Dubovitskaya, “On the Brauer Group of a Two-Dimensional Local Field”, Mat. Zametki, 81:6 (2007), 838–841; Math. Notes, 81:6 (2007), 753–756
Linking options:
https://www.mathnet.ru/eng/mzm3733https://doi.org/10.4213/mzm3733 https://www.mathnet.ru/eng/mzm/v81/i6/p838
|
Statistics & downloads: |
Abstract page: | 311 | Full-text PDF : | 199 | References: | 44 | First page: | 4 |
|