Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 6, Pages 838–841
DOI: https://doi.org/10.4213/mzm3733
(Mi mzm3733)
 

On the Brauer Group of a Two-Dimensional Local Field

M. A. Dubovitskaya

Institute for the History of Science and Technilogy
References:
Abstract: The two-dimensional local field $K=F_q((u))((t))$, $\operatorname{char}K=p$, and its Brauer group $\operatorname{Br}(K)$ are considered. It is proved that, if $L=K(x)$ is the field extension for which we have $x^p-x=ut^{-p}=:h$, then the condition that $(y,f\,|\,h]_K=0$ for any $y\in K$ is equivalent to the condition $f\in\operatorname{Im}(\operatorname{Nm}(L^*))$.
Keywords: two-dimensional local field, Brauer group, field extension, local field.
Received: 27.12.2005
English version:
Mathematical Notes, 2007, Volume 81, Issue 6, Pages 753–756
DOI: https://doi.org/10.1134/S0001434607050227
Bibliographic databases:
UDC: 512.625.7
Language: Russian
Citation: M. A. Dubovitskaya, “On the Brauer Group of a Two-Dimensional Local Field”, Mat. Zametki, 81:6 (2007), 838–841; Math. Notes, 81:6 (2007), 753–756
Citation in format AMSBIB
\Bibitem{Dub07}
\by M.~A.~Dubovitskaya
\paper On the Brauer Group of a Two-Dimensional Local Field
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 6
\pages 838--841
\mathnet{http://mi.mathnet.ru/mzm3733}
\crossref{https://doi.org/10.4213/mzm3733}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2349100}
\zmath{https://zbmath.org/?q=an:1134.11043}
\elib{https://elibrary.ru/item.asp?id=9511608}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 6
\pages 753--756
\crossref{https://doi.org/10.1134/S0001434607050227}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547317146}
Linking options:
  • https://www.mathnet.ru/eng/mzm3733
  • https://doi.org/10.4213/mzm3733
  • https://www.mathnet.ru/eng/mzm/v81/i6/p838
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :197
    References:43
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024