Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 5, Pages 744–750
DOI: https://doi.org/10.4213/mzm3718
(Mi mzm3718)
 

This article is cited in 5 scientific papers (total in 5 papers)

Approximation of Functions of Dirichlet Class by Fejér Means

V. V. Savchuk

Institute of Mathematics, Ukrainian National Academy of Sciences
Full-text PDF (420 kB) Citations (5)
References:
Abstract: For the Dirichlet classes Dp of holomorphic functions in the disk, we obtain the exact orders of best polynomial approximations and of upper bounds for deviations of Fejér means of Taylor series in the Hardy spaces Hp.
Keywords: Dirichlet class of holomorphic functions, Fejér mean, best polynomial approximation, Taylor series, Hardy space, Fubini theorem, Riesz theorem.
Received: 10.05.2006
Revised: 18.09.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 5, Pages 665–670
DOI: https://doi.org/10.1134/S0001434607050124
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. V. Savchuk, “Approximation of Functions of Dirichlet Class by Fejér Means”, Mat. Zametki, 81:5 (2007), 744–750; Math. Notes, 81:5 (2007), 665–670
Citation in format AMSBIB
\Bibitem{Sav07}
\by V.~V.~Savchuk
\paper Approximation of Functions of Dirichlet Class by Fej\'er Means
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 5
\pages 744--750
\mathnet{http://mi.mathnet.ru/mzm3718}
\crossref{https://doi.org/10.4213/mzm3718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2348825}
\zmath{https://zbmath.org/?q=an:1132.41006}
\elib{https://elibrary.ru/item.asp?id=9498103}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 5
\pages 665--670
\crossref{https://doi.org/10.1134/S0001434607050124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547246222}
Linking options:
  • https://www.mathnet.ru/eng/mzm3718
  • https://doi.org/10.4213/mzm3718
  • https://www.mathnet.ru/eng/mzm/v81/i5/p744
  • This publication is cited in the following 5 articles:
    1. P. G. Potseiko, E. A. Rovba, “Ratsionalnyi integralnyi operator Feiera na otrezke i approksimatsii funktsii so stepennoi osobennostyu”, Tr. IMM UrO RAN, 30, no. 1, 2024, 170–189  mathnet  crossref  elib
    2. O. G. Rovenska, V. V. Savchuk, M. V. Savchuk, “Approximation of Holomorphic Functions by Cesàro Means”, Ukr Math J, 74:5 (2022), 773  crossref
    3. O. G. Rovenska, V. V. Savchuk, M. V. Savchuk, “Nablizhennya golomorfnikh funktsіi serednіmi Chezaro”, Ukr. Mat. Zhurn., 74:5 (2022), 676  crossref
    4. Savchuk V.V., Chaichenko S.O., Savchuk V M., “Approximation of Bounded Holomorphic and Harmonic Functions By Fejer Means”, Ukr. Math. J., 71:4 (2019), 589–618  crossref  mathscinet  isi  scopus
    5. Chen Y.W., Li Z.F., Liu Y.J., Computing, Control, Information and Education Engineering, Proceedings of the 2015 International Conference on Computer, Intelligent Computing and Education Technology (CICET 2015), April 11-12, 2015, Guilin, P.R. China, eds. Liu H., Sung W., WenliYao, Crc Press-Taylor & Francis Group, 2015  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:469
    Full-text PDF :232
    References:77
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025