Citation:
E. A. Shiryaev, A. A. Shkalikov, “Regular and Completely Regular Differential Operators”, Mat. Zametki, 81:4 (2007), 636–640; Math. Notes, 81:4 (2007), 566–570
This publication is cited in the following 14 articles:
Akhtyamov A.M., “Nonexistence of Degenerate Boundary Conditions in a Spectral Problem”, Differ. Equ., 57:1 (2021), 117–121
A. M. Akhtyamov, “O konechnom spektre trekhtochechnykh kraevykh zadach”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:2 (2020), 130–135
Ya. O. Baranetskij, P. I. Kalenyuk, “Nonlocal Multipoint Problem with Multiple Spectrum for an Ordinary (2n)TH Order Differential Equation”, J Math Sci, 246:2 (2020), 152
Akhtyamov A.M., “Finiteness of the Spectrum of Boundary Value Problems”, Differ. Equ., 55:1 (2019), 142–144
Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions For the Sturm-Liouville Problem on a Geometric Graph”, Differ. Equ., 55:4 (2019), 500–509
Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions on a Geometric Graph”, Dokl. Math., 99:2 (2019), 167–170
V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “The finiteness of the spectrum of boundary value problems defined on a geometric graph”, Trans. Moscow Math. Soc., 80 (2019), 123–131
A. M. Akhtyamov, “Survey of studies on degenerate boundary conditions and finite spectrum”, Proceedings of the Mavlyutov Institute of Mechanics, 14:3 (2019), 184–291
A. M. Akhtyamov, “Degenerate boundary conditions for a third-order differential equation”, Differ. Equ., 54:4 (2018), 419–426
Baranets'kyi Ya.O. Kalenyuk P.I. Kolyasa L.I., “Spectral Properties of Nonself-Adjoint Nonlocal Boundary-Value Problems For the Operator of Differentiation of Even Order”, Ukr. Math. J., 70:6 (2018), 851–865
A. M. Akhtyamov, “On the Spectrum of an Odd-Order Differential Operator”, Math. Notes, 101:5 (2017), 755–758
Gesztesy F. Tkachenko V., “A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and antiperiodic boundary conditions”, J. Differential Equations, 253:2 (2012), 400–437
Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Sturm–Liouville oscillation theory for impulsive problems”, Russian Math. Surveys, 63:1 (2008), 109–153