Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 636–640
DOI: https://doi.org/10.4213/mzm3708
(Mi mzm3708)
 

This article is cited in 14 scientific papers (total in 14 papers)

Brief Communications

Regular and Completely Regular Differential Operators

E. A. Shiryaev, A. A. Shkalikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Keywords: ordinary differential operator, Birkhoff regularity, complete regularity, eigenfunction expansion theorem, Green kernel.
Received: 10.11.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 566–570
DOI: https://doi.org/10.1134/S0001434607030352
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Shiryaev, A. A. Shkalikov, “Regular and Completely Regular Differential Operators”, Mat. Zametki, 81:4 (2007), 636–640; Math. Notes, 81:4 (2007), 566–570
Citation in format AMSBIB
\Bibitem{ShiShk07}
\by E.~A.~Shiryaev, A.~A.~Shkalikov
\paper Regular and Completely Regular Differential Operators
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 636--640
\mathnet{http://mi.mathnet.ru/mzm3708}
\crossref{https://doi.org/10.4213/mzm3708}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352030}
\zmath{https://zbmath.org/?q=an:1156.34075}
\elib{https://elibrary.ru/item.asp?id=9486233}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 566--570
\crossref{https://doi.org/10.1134/S0001434607030352}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000035}
\elib{https://elibrary.ru/item.asp?id=13558914}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248351430}
Linking options:
  • https://www.mathnet.ru/eng/mzm3708
  • https://doi.org/10.4213/mzm3708
  • https://www.mathnet.ru/eng/mzm/v81/i4/p636
  • This publication is cited in the following 14 articles:
    1. Akhtyamov A.M., “Nonexistence of Degenerate Boundary Conditions in a Spectral Problem”, Differ. Equ., 57:1 (2021), 117–121  crossref  mathscinet  isi  scopus
    2. A. M. Akhtyamov, “O konechnom spektre trekhtochechnykh kraevykh zadach”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:2 (2020), 130–135  mathnet  crossref
    3. Ya. O. Baranetskij, P. I. Kalenyuk, “Nonlocal Multipoint Problem with Multiple Spectrum for an Ordinary (2n)TH Order Differential Equation”, J Math Sci, 246:2 (2020), 152  crossref
    4. Akhtyamov A.M., “Finiteness of the Spectrum of Boundary Value Problems”, Differ. Equ., 55:1 (2019), 142–144  crossref  mathscinet  isi  scopus
    5. Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions For the Sturm-Liouville Problem on a Geometric Graph”, Differ. Equ., 55:4 (2019), 500–509  crossref  mathscinet  isi  scopus
    6. Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions on a Geometric Graph”, Dokl. Math., 99:2 (2019), 167–170  crossref  mathscinet  isi
    7. V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “The finiteness of the spectrum of boundary value problems defined on a geometric graph”, Trans. Moscow Math. Soc., 80 (2019), 123–131  mathnet  crossref  elib
    8. A. M. Akhtyamov, “Survey of studies on degenerate boundary conditions and finite spectrum”, Proceedings of the Mavlyutov Institute of Mechanics, 14:3 (2019), 184–291  mathnet  mathnet  crossref
    9. A. M. Akhtyamov, “Degenerate boundary conditions for a third-order differential equation”, Differ. Equ., 54:4 (2018), 419–426  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    10. Baranets'kyi Ya.O. Kalenyuk P.I. Kolyasa L.I., “Spectral Properties of Nonself-Adjoint Nonlocal Boundary-Value Problems For the Operator of Differentiation of Even Order”, Ukr. Math. J., 70:6 (2018), 851–865  crossref  isi  scopus
    11. A. M. Akhtyamov, “On the Spectrum of an Odd-Order Differential Operator”, Math. Notes, 101:5 (2017), 755–758  mathnet  crossref  crossref  mathscinet  isi  elib
    12. Freiling G., “Irregular boundary value problems revisited”, Results Math., 62:3-4 (2012), 265–294  crossref  mathscinet  zmath  isi  elib  scopus
    13. Gesztesy F. Tkachenko V., “A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and antiperiodic boundary conditions”, J. Differential Equations, 253:2 (2012), 400–437  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Sturm–Liouville oscillation theory for impulsive problems”, Russian Math. Surveys, 63:1 (2008), 109–153  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:792
    Full-text PDF :383
    References:99
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025