Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 625–630
DOI: https://doi.org/10.4213/mzm3706
(Mi mzm3706)
 

This article is cited in 9 scientific papers (total in 9 papers)

Brief Communications

Description of Spectral Functions of Differential Operators with Arbitrary Deficiency Indices

V. I. Mogilevskii

Luhansk Taras Schevchenko State Pedagogical University
Full-text PDF (334 kB) Citations (9)
References:
Keywords: differential expression, deficiency index, spectral function, Nevanlinna matrix, Hilbert space, holomorphic function, spectral function, Weyl function.
Received: 20.09.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 553–559
DOI: https://doi.org/10.1134/S0001434607030339
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Mogilevskii, “Description of Spectral Functions of Differential Operators with Arbitrary Deficiency Indices”, Mat. Zametki, 81:4 (2007), 625–630; Math. Notes, 81:4 (2007), 553–559
Citation in format AMSBIB
\Bibitem{Mog07}
\by V.~I.~Mogilevskii
\paper Description of Spectral Functions of Differential Operators with Arbitrary Deficiency Indices
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 625--630
\mathnet{http://mi.mathnet.ru/mzm3706}
\crossref{https://doi.org/10.4213/mzm3706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352028}
\zmath{https://zbmath.org/?q=an:1142.34391}
\elib{https://elibrary.ru/item.asp?id=9486231}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 553--559
\crossref{https://doi.org/10.1134/S0001434607030339}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248591783}
Linking options:
  • https://www.mathnet.ru/eng/mzm3706
  • https://doi.org/10.4213/mzm3706
  • https://www.mathnet.ru/eng/mzm/v81/i4/p625
  • This publication is cited in the following 9 articles:
    1. Gesztesy F., Naboko S.N., Weikard R., Zinchenko M., “Donoghue-Type M-Functions For Schrodinger Operators With Operator-Valued Potentials”, J. Anal. Math., 137:1 (2019), 373–427  crossref  mathscinet  isi  scopus
    2. Clark S., Gesztesy F., Nichols R., “Principal Solutions Revisited”, Stochastic and Infinite Dimensional Analysis, Trends in Mathematics, eds. Bernido C., CarpioBernido M., Grothaus M., Kuna T., Oliveira M., DaSilva J., Birkhauser Boston, 2016, 85–117  crossref  isi
    3. Mogilevskii V., “On Characteristic Matrices and Eigenfunction Expansions of Two Singular Point Symmetric Systems”, Math. Nachr., 288:2-3 (2015), 249–280  crossref  mathscinet  zmath  isi  scopus
    4. Mogilevskii V., “on Eigenfunction Expansions of First-Order Symmetric Systems and Ordinary Differential Operators of An Odd Order”, Integr. Equ. Oper. Theory, 82:3 (2015), 301–337  crossref  mathscinet  zmath  isi  scopus
    5. Albeverio S., Malamud M., Mogilevskii V., “On Titchmarsh-Weyl Functions and Eigenfunction Expansions of First-Order Symmetric Systems”, Integr. Equ. Oper. Theory, 77:3 (2013), 303–354  crossref  mathscinet  zmath  isi  scopus
    6. Gesztesy F., Weikard R., Zinchenko M., “On Spectral Theory for Schrodinger Operators with Operator-Valued Potentials”, J. Differ. Equ., 255:7 (2013), 1784–1827  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Gesztesy F., Weikard R., Zinchenko M., “Initial Value Problems and Weyl-Titchmarsh Theory for Schrodinger Operators with Operator-Valued Potentials”, Oper. Matrices, 7:2 (2013), 241–283  crossref  mathscinet  zmath  isi  scopus
    8. Mogilevskii V., “Minimal spectral functions of an ordinary differential operator”, Proc. Edinb. Math. Soc. (2), 55:3 (2012), 731–769  crossref  mathscinet  zmath  isi  scopus
    9. Behrndt J. Hassi S. de Snoo H. Wietsma R., “Square-integrable solutions and Weyl functions for singular canonical systems”, Math. Nachr., 284:11-12 (2011), 1334–1384  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :221
    References:88
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025