Citation:
V. I. Mogilevskii, “Description of Spectral Functions of Differential Operators with Arbitrary Deficiency Indices”, Mat. Zametki, 81:4 (2007), 625–630; Math. Notes, 81:4 (2007), 553–559
This publication is cited in the following 9 articles:
Gesztesy F., Naboko S.N., Weikard R., Zinchenko M., “Donoghue-Type M-Functions For Schrodinger Operators With Operator-Valued Potentials”, J. Anal. Math., 137:1 (2019), 373–427
Clark S., Gesztesy F., Nichols R., “Principal Solutions Revisited”, Stochastic and Infinite Dimensional Analysis, Trends in Mathematics, eds. Bernido C., CarpioBernido M., Grothaus M., Kuna T., Oliveira M., DaSilva J., Birkhauser Boston, 2016, 85–117
Mogilevskii V., “On Characteristic Matrices and Eigenfunction Expansions of Two Singular Point Symmetric Systems”, Math. Nachr., 288:2-3 (2015), 249–280
Mogilevskii V., “on Eigenfunction Expansions of First-Order Symmetric Systems and Ordinary Differential Operators of An Odd Order”, Integr. Equ. Oper. Theory, 82:3 (2015), 301–337
Albeverio S., Malamud M., Mogilevskii V., “On Titchmarsh-Weyl Functions and Eigenfunction Expansions of First-Order Symmetric Systems”, Integr. Equ. Oper. Theory, 77:3 (2013), 303–354
Gesztesy F., Weikard R., Zinchenko M., “On Spectral Theory for Schrodinger Operators with Operator-Valued Potentials”, J. Differ. Equ., 255:7 (2013), 1784–1827
Gesztesy F., Weikard R., Zinchenko M., “Initial Value Problems and Weyl-Titchmarsh Theory for Schrodinger Operators with Operator-Valued Potentials”, Oper. Matrices, 7:2 (2013), 241–283
Mogilevskii V., “Minimal spectral functions of an ordinary differential operator”, Proc. Edinb. Math. Soc. (2), 55:3 (2012), 731–769
Behrndt J. Hassi S. de Snoo H. Wietsma R., “Square-integrable solutions and Weyl functions for singular canonical systems”, Math. Nachr., 284:11-12 (2011), 1334–1384