Abstract:
For set-valued random sequences (Gn)Nn=0 with relatively open convex values Gn(ω), we prove a new test for the existence of a sequence (xn)Nn=0 of selectors adapted to the filtration and admitting an equivalent martingale measure. The statement is formulated in terms of the supports of regular upper conditional distributions of Gn. This is a strengthening of the main result proved in our previous paper [1], where the openness of the set Gn(ω) was assumed and a possible weakening of this condition was discussed.
Citation:
D. B. Rokhlin, “A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences”, Mat. Zametki, 81:4 (2007), 614–620; Math. Notes, 81:4 (2007), 543–548
\Bibitem{Rok07}
\by D.~B.~Rokhlin
\paper A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 614--620
\mathnet{http://mi.mathnet.ru/mzm3703}
\crossref{https://doi.org/10.4213/mzm3703}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352026}
\zmath{https://zbmath.org/?q=an:1133.60008}
\elib{https://elibrary.ru/item.asp?id=9486229}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 543--548
\crossref{https://doi.org/10.1134/S0001434607030315}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248340357}
Linking options:
https://www.mathnet.ru/eng/mzm3703
https://doi.org/10.4213/mzm3703
https://www.mathnet.ru/eng/mzm/v81/i4/p614
This publication is cited in the following 4 articles:
Sass J., Smaga M., “Ftap in Finite Discrete Time With Transaction Costs By Utility Maximization”, Financ. Stoch., 18:4 (2014), 805–823
Denis E., Kabanov Yu., “Consistent price systems and arbitrage opportunities of the second kind in models with transaction costs”, Finance Stoch., 16:1 (2012), 135–154
D. B. Rokhlin, “Recurrence relations for price bounds of contingent claims in discrete time market models”, Theory Probab. Appl., 56:1 (2012), 72–95
Miklós Rásonyi, Optimality and Risk - Modern Trends in Mathematical Finance, 2009, 211