Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 614–620
DOI: https://doi.org/10.4213/mzm3703
(Mi mzm3703)
 

This article is cited in 4 scientific papers (total in 4 papers)

A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences

D. B. Rokhlin

Rostov State University
Full-text PDF (451 kB) Citations (4)
References:
Abstract: For set-valued random sequences $(G_n)_{n=0}^N$ with relatively open convex values $G_n(\omega)$, we prove a new test for the existence of a sequence $(x_n)_{n=0}^N$ of selectors adapted to the filtration and admitting an equivalent martingale measure. The statement is formulated in terms of the supports of regular upper conditional distributions of $G_n$. This is a strengthening of the main result proved in our previous paper [1], where the openness of the set $G_n(\omega)$ was assumed and a possible weakening of this condition was discussed.
Keywords: representation, set-valued random sequence, martingale selection, measurable set-valued map, arbitrage theory, market model, pricing process.
Received: 28.02.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 543–548
DOI: https://doi.org/10.1134/S0001434607030315
Bibliographic databases:
UDC: 519.216.8
Language: Russian
Citation: D. B. Rokhlin, “A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences”, Mat. Zametki, 81:4 (2007), 614–620; Math. Notes, 81:4 (2007), 543–548
Citation in format AMSBIB
\Bibitem{Rok07}
\by D.~B.~Rokhlin
\paper A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 614--620
\mathnet{http://mi.mathnet.ru/mzm3703}
\crossref{https://doi.org/10.4213/mzm3703}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352026}
\zmath{https://zbmath.org/?q=an:1133.60008}
\elib{https://elibrary.ru/item.asp?id=9486229}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 543--548
\crossref{https://doi.org/10.1134/S0001434607030315}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248340357}
Linking options:
  • https://www.mathnet.ru/eng/mzm3703
  • https://doi.org/10.4213/mzm3703
  • https://www.mathnet.ru/eng/mzm/v81/i4/p614
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024