Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 528–539
DOI: https://doi.org/10.4213/mzm3695
(Mi mzm3695)
 

This article is cited in 9 scientific papers (total in 9 papers)

On Some Questions Related to the Krichever Correspondence

A. B. Zheglova, D. V. Osipovb

a M. V. Lomonosov Moscow State University
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (565 kB) Citations (9)
References:
Abstract: We investigate various new properties and examples of the two-dimensional and one-dimensional Krichever correspondence.
Keywords: algebraic curve, torsion-free sheaf, cohomology group, Krichever correspondence, ample Cartier divisor, Fredholm subspace.
Received: 06.06.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 467–476
DOI: https://doi.org/10.1134/S0001434607030236
Bibliographic databases:
Document Type: Article
UDC: 512.77+517.95
Language: Russian
Citation: A. B. Zheglov, D. V. Osipov, “On Some Questions Related to the Krichever Correspondence”, Mat. Zametki, 81:4 (2007), 528–539; Math. Notes, 81:4 (2007), 467–476
Citation in format AMSBIB
\Bibitem{ZheOsi07}
\by A.~B.~Zheglov, D.~V.~Osipov
\paper On Some Questions Related to the Krichever Correspondence
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 528--539
\mathnet{http://mi.mathnet.ru/mzm3695}
\crossref{https://doi.org/10.4213/mzm3695}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2351858}
\zmath{https://zbmath.org/?q=an:1134.14023}
\elib{https://elibrary.ru/item.asp?id=9486221}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 467--476
\crossref{https://doi.org/10.1134/S0001434607030236}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000023}
\elib{https://elibrary.ru/item.asp?id=13562048}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248326767}
Linking options:
  • https://www.mathnet.ru/eng/mzm3695
  • https://doi.org/10.4213/mzm3695
  • https://www.mathnet.ru/eng/mzm/v81/i4/p528
  • This publication is cited in the following 9 articles:
    1. Alexander B. Zheglov, “The Schur–Sato Theory for Quasi-elliptic Rings”, Proc. Steklov Inst. Math., 320 (2023), 115–160  mathnet  crossref  crossref  mathscinet
    2. A. B. Zheglov, “Surprising examples of nonrational smooth spectral surfaces”, Sb. Math., 209:8 (2018), 1131–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Vik. S. Kulikov, “On divisors of small canonical degree on Godeaux surfaces”, Sb. Math., 209:8 (2018), 1155–1163  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Dmitry V. Talalaev, “Zamolodchikov Tetrahedral Equation and Higher Hamiltonians of $2d$ Quantum Integrable Systems”, SIGMA, 13 (2017), 031, 14 pp.  mathnet  crossref
    5. A. B. Zheglov, H. Kurke, “Geometric properties of commutative subalgebras of partial differential operators”, Sb. Math., 206:5 (2015), 676–717  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814  mathnet  crossref  mathscinet  zmath  isi  elib
    7. A. B. Zheglov, A. E. Mironov, “Moduli Beikera – Akhiezera, puchki Krichevera i kommutativnye koltsa differentsialnykh operatorov v chastnykh proizvodnykh”, Dalnevost. matem. zhurn., 12:1 (2012), 20–34  mathnet
    8. Kurke H., Osipov D.V., Zheglov A.B., “Formal groups arising from formal punctured ribbons”, Internat. J. Math., 21:6 (2010), 755–797  crossref  mathscinet  zmath  isi  elib  scopus
    9. Kurke H., Osipov D., Zheglov A., “Formal punctured ribbons and two-dimensional local fields”, J. Reine Angew. Math., 629 (2009), 133–170  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:615
    Full-text PDF :242
    References:92
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025