Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 3, Pages 405–416
DOI: https://doi.org/10.4213/mzm3682
(Mi mzm3682)
 

The π-π-Theorem for Manifold Pairs

Yu. V. Muranova, D. Repovšb, M. Cenceljb

a Vitebsk State University named after P. M. Masherov
b University of Ljubljana
References:
Abstract: The surgery obstruction of a normal map to a simple Poincaré pair (X,Y) lies in the relative surgery obstruction group L(π1(Y)π1(X)). A well-known result of Wall, the so-called π-π-theorem, states that in higher dimensions a normal map of a manifold with boundary to a simple Poincaré pair with π1(X)π1(Y) is normally bordant to a simple homotopy equivalence of pairs. In order to study normal maps to a manifold with a submanifold, Wall introduced the surgery obstruction groups LP for manifold pairs and splitting obstruction groups LS. In the present paper, we formulate and prove for manifold pairs with boundaries results similar to the π-π-theorem. We give direct geometric proofs, which are based on the original statements of Wall's results and apply obtained results to investigate surgery on filtered manifolds.
Keywords: surgery obstruction groups, surgery on manifold pairs, normal maps, homotopy triangulation, splitting obstruction groups, π-π-theorem.
Received: 29.06.2005
Revised: 10.03.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 3, Pages 356–364
DOI: https://doi.org/10.1134/S0001434607030091
Bibliographic databases:
UDC: 513.83+515.1
Language: Russian
Citation: Yu. V. Muranov, D. Repovš, M. Cencelj, “The π-π-Theorem for Manifold Pairs”, Mat. Zametki, 81:3 (2007), 405–416; Math. Notes, 81:3 (2007), 356–364
Citation in format AMSBIB
\Bibitem{MurRepCen07}
\by Yu.~V.~Muranov, D.~Repov{\v s}, M.~Cencelj
\paper The $\pi$-$\pi$-Theorem for Manifold Pairs
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 3
\pages 405--416
\mathnet{http://mi.mathnet.ru/mzm3682}
\crossref{https://doi.org/10.4213/mzm3682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333945}
\zmath{https://zbmath.org/?q=an:1141.57012}
\elib{https://elibrary.ru/item.asp?id=9466275}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 3
\pages 356--364
\crossref{https://doi.org/10.1134/S0001434607030091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000009}
\elib{https://elibrary.ru/item.asp?id=13554498}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248360640}
Linking options:
  • https://www.mathnet.ru/eng/mzm3682
  • https://doi.org/10.4213/mzm3682
  • https://www.mathnet.ru/eng/mzm/v81/i3/p405
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :230
    References:63
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025