Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 3, Pages 405–416
DOI: https://doi.org/10.4213/mzm3682
(Mi mzm3682)
 

The $\pi$-$\pi$-Theorem for Manifold Pairs

Yu. V. Muranova, D. Repovšb, M. Cenceljb

a Vitebsk State University named after P. M. Masherov
b University of Ljubljana
References:
Abstract: The surgery obstruction of a normal map to a simple Poincaré pair $(X,Y)$ lies in the relative surgery obstruction group $L_*(\pi_1(Y)\to\pi_1(X))$. A well-known result of Wall, the so-called $\pi$-$\pi$-theorem, states that in higher dimensions a normal map of a manifold with boundary to a simple Poincaré pair with $\pi_1(X)\cong\pi_1(Y)$ is normally bordant to a simple homotopy equivalence of pairs. In order to study normal maps to a manifold with a submanifold, Wall introduced the surgery obstruction groups $LP_*$ for manifold pairs and splitting obstruction groups $LS_*$. In the present paper, we formulate and prove for manifold pairs with boundaries results similar to the $\pi$-$\pi$-theorem. We give direct geometric proofs, which are based on the original statements of Wall's results and apply obtained results to investigate surgery on filtered manifolds.
Keywords: surgery obstruction groups, surgery on manifold pairs, normal maps, homotopy triangulation, splitting obstruction groups, $\pi$-$\pi$-theorem.
Received: 29.06.2005
Revised: 10.03.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 3, Pages 356–364
DOI: https://doi.org/10.1134/S0001434607030091
Bibliographic databases:
UDC: 513.83+515.1
Language: Russian
Citation: Yu. V. Muranov, D. Repovš, M. Cencelj, “The $\pi$-$\pi$-Theorem for Manifold Pairs”, Mat. Zametki, 81:3 (2007), 405–416; Math. Notes, 81:3 (2007), 356–364
Citation in format AMSBIB
\Bibitem{MurRepCen07}
\by Yu.~V.~Muranov, D.~Repov{\v s}, M.~Cencelj
\paper The $\pi$-$\pi$-Theorem for Manifold Pairs
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 3
\pages 405--416
\mathnet{http://mi.mathnet.ru/mzm3682}
\crossref{https://doi.org/10.4213/mzm3682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333945}
\zmath{https://zbmath.org/?q=an:1141.57012}
\elib{https://elibrary.ru/item.asp?id=9466275}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 3
\pages 356--364
\crossref{https://doi.org/10.1134/S0001434607030091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000009}
\elib{https://elibrary.ru/item.asp?id=13554498}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248360640}
Linking options:
  • https://www.mathnet.ru/eng/mzm3682
  • https://doi.org/10.4213/mzm3682
  • https://www.mathnet.ru/eng/mzm/v81/i3/p405
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024