Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 3, Pages 341–347
DOI: https://doi.org/10.4213/mzm3677
(Mi mzm3677)
 

This article is cited in 1 scientific paper (total in 1 paper)

Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals

I. S. Kats

Odessa State Academy of Food Technology
Full-text PDF (410 kB) Citations (1)
References:
Abstract: We establish that the problem of constructing a strictly increasing singular function is equivalent to the problem of constructing subsets $\mathscr P$ and $\mathscr Q$ of a closed interval $[a;b]\subset\mathbb R$ such that (1) $\mathscr P\cap\mathscr Q=\varnothing$; (2) $\mathscr P\cup\mathscr Q=[a;b]$; (3) the Lebesgue measures of the intersections of $\mathscr P$ and $\mathscr Q$ with an arbitrary interval $J\subset[a;b]$ are positive.
Keywords: singular function, Cantor set, perfect set, heavily intermittent partition, Borel set, Lebesgue measurable set, completely additive function.
Received: 04.07.2005
Revised: 09.11.2005
English version:
Mathematical Notes, 2007, Volume 81, Issue 3, Pages 302–307
DOI: https://doi.org/10.1134/S0001434607030042
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. S. Kats, “Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals”, Mat. Zametki, 81:3 (2007), 341–347; Math. Notes, 81:3 (2007), 302–307
Citation in format AMSBIB
\Bibitem{Kat07}
\by I.~S.~Kats
\paper Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 3
\pages 341--347
\mathnet{http://mi.mathnet.ru/mzm3677}
\crossref{https://doi.org/10.4213/mzm3677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333940}
\zmath{https://zbmath.org/?q=an:1135.26006}
\elib{https://elibrary.ru/item.asp?id=9466270}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 3
\pages 302--307
\crossref{https://doi.org/10.1134/S0001434607030042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000004}
\elib{https://elibrary.ru/item.asp?id=13562053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248328629}
Linking options:
  • https://www.mathnet.ru/eng/mzm3677
  • https://doi.org/10.4213/mzm3677
  • https://www.mathnet.ru/eng/mzm/v81/i3/p341
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :227
    References:56
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024