Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 4, Pages 508–521
DOI: https://doi.org/10.4213/mzm362
(Mi mzm362)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations

I. L. Bloshanskii

Moscow State Pedagogical University
Full-text PDF (248 kB) Citations (3)
References:
Abstract: In this paper, we study the problem of the variation (if any) of the sets of convergence and divergence everywhere or almost everywhere of a multiple Fourier series (integral) of a function $f\in L_p$, $p\ge 1$, $f(x)=0$, on a set of positive measure $\mathfrak A\subset \mathbb T^N=[-\pi ,\pi )^N$, $N\ge 2$, depending on the rotation of the coordinate system, i.e., depending on the element $\tau \in \mathcal F$, where $\mathcal F$ is the rotation group about the origin in $\mathbb R^N$. This problem has been reduced to the study of the change in the geometry of the sets $\tau ^{-1}({\mathfrak A})\cap \mathbb T^N$ (where $\tau ^{-1}\in \mathcal F$ satisfies $\tau ^{-1}\cdot \tau =1$) and $\mathbb T^N\setminus \operatorname {supp}(f\circ \tau )$ depending on the rotation, i.e., on $\tau \in \mathcal F$. In the present paper, we consider two settings of this problem (depending on the sense in which the Fourier series of the function $f\circ \tau $ is understood) and give (for both cases) possible solutions of the problem in the class $L_1(\mathbb T^N)$, $N\ge 2$.
Received: 26.01.2001
Revised: 01.07.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 4, Pages 464–476
DOI: https://doi.org/10.1023/A:1014871529393
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. L. Bloshanskii, “A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations”, Mat. Zametki, 71:4 (2002), 508–521; Math. Notes, 71:4 (2002), 464–476
Citation in format AMSBIB
\Bibitem{Blo02}
\by I.~L.~Bloshanskii
\paper A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 4
\pages 508--521
\mathnet{http://mi.mathnet.ru/mzm362}
\crossref{https://doi.org/10.4213/mzm362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1913580}
\zmath{https://zbmath.org/?q=an:1024.42004}
\elib{https://elibrary.ru/item.asp?id=5025294}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 4
\pages 464--476
\crossref{https://doi.org/10.1023/A:1014871529393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175483000017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141736977}
Linking options:
  • https://www.mathnet.ru/eng/mzm362
  • https://doi.org/10.4213/mzm362
  • https://www.mathnet.ru/eng/mzm/v71/i4/p508
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024