Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 4, Pages 508–521
DOI: https://doi.org/10.4213/mzm362
(Mi mzm362)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Criterion for Weak Generalized Localization in the Class L1 for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations

I. L. Bloshanskii

Moscow State Pedagogical University
Full-text PDF (248 kB) Citations (3)
References:
Abstract: In this paper, we study the problem of the variation (if any) of the sets of convergence and divergence everywhere or almost everywhere of a multiple Fourier series (integral) of a function fLp, p1, f(x)=0, on a set of positive measure ATN=[π,π)N, N2, depending on the rotation of the coordinate system, i.e., depending on the element τF, where F is the rotation group about the origin in RN. This problem has been reduced to the study of the change in the geometry of the sets τ1(A)TN (where τ1F satisfies τ1τ=1) and TNsupp(fτ) depending on the rotation, i.e., on τF. In the present paper, we consider two settings of this problem (depending on the sense in which the Fourier series of the function fτ is understood) and give (for both cases) possible solutions of the problem in the class L1(TN), N2.
Received: 26.01.2001
Revised: 01.07.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 4, Pages 464–476
DOI: https://doi.org/10.1023/A:1014871529393
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. L. Bloshanskii, “A Criterion for Weak Generalized Localization in the Class L1 for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations”, Mat. Zametki, 71:4 (2002), 508–521; Math. Notes, 71:4 (2002), 464–476
Citation in format AMSBIB
\Bibitem{Blo02}
\by I.~L.~Bloshanskii
\paper A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 4
\pages 508--521
\mathnet{http://mi.mathnet.ru/mzm362}
\crossref{https://doi.org/10.4213/mzm362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1913580}
\zmath{https://zbmath.org/?q=an:1024.42004}
\elib{https://elibrary.ru/item.asp?id=5025294}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 4
\pages 464--476
\crossref{https://doi.org/10.1023/A:1014871529393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175483000017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141736977}
Linking options:
  • https://www.mathnet.ru/eng/mzm362
  • https://doi.org/10.4213/mzm362
  • https://www.mathnet.ru/eng/mzm/v71/i4/p508
  • This publication is cited in the following 3 articles:
    1. I. L. Bloshanskii, Applied and Numerical Harmonic Analysis, Wavelet Analysis and Applications, 2007, 13  crossref
    2. I. L. BLOSHANSKII, “STRUCTURAL AND GEOMETRIC CHARACTERISTICS OF SETS OF CONVERGENCE AND DIVERGENCE OF MULTIPLE FOURIER SERIES OF FUNCTIONS WHICH EQUAL ZERO ON SOME SET”, Int. J. Wavelets Multiresolut Inf. Process., 02:02 (2004), 187  crossref
    3. Bloshanskii I., “Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series of Functions Which Equal Zero on Some Set”, Wavelet Analysis and its Applications (WAA), Vols 1 and 2, eds. Li J., Wickerhauser V., Tang Y., Daugman J., Peng L., Zhao J., World Scientific Publ Co Pte Ltd, 2003, 183–193  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :228
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025