Abstract:
We prove a general theorem concerning a distribution of Bose–Einstein type. Using this theorem,
we apply the notions of lattice dimension and lattice density to oscillatory time series.
Citation:
V. P. Maslov, “Densities of Lattices Corresponding to Spaces of Positive, Negative, and Variational Dimension,
and Their Application to Time Series”, Mat. Zametki, 81:2 (2007), 251–264; Math. Notes, 81:1 (2007), 222–233
\Bibitem{Mas07}
\by V.~P.~Maslov
\paper Densities of Lattices Corresponding to Spaces of Positive, Negative, and Variational Dimension,
and Their Application to Time Series
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 2
\pages 251--264
\mathnet{http://mi.mathnet.ru/mzm3552}
\crossref{https://doi.org/10.4213/mzm3552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333884}
\zmath{https://zbmath.org/?q=an:1132.62347}
\elib{https://elibrary.ru/item.asp?id=9448932}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 222--233
\crossref{https://doi.org/10.1134/S0001434607010257}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947543212}
Linking options:
https://www.mathnet.ru/eng/mzm3552
https://doi.org/10.4213/mzm3552
https://www.mathnet.ru/eng/mzm/v81/i2/p251
This publication is cited in the following 3 articles:
V. P. Maslov, “Parastatistics and the General Theorem of Probability Theory as Applied to Risk-Free Investments”, Math. Notes, 81:3 (2007), 422–425
V. P. Maslov, “A Theorem on Parastatistics and Its Application”, Theoret. and Math. Phys., 150:3 (2007), 436–437
Maslov VP, “Quantization of topological spaces of negative dimension, parastatistics, and distribution of dependent random variables”, Doklady Mathematics, 75:3 (2007), 424–427