Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 2, Pages 163–173
DOI: https://doi.org/10.4213/mzm3544
(Mi mzm3544)
 

Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces

S. I. Adiana, F. Grunevaldb, J. Mennickec, A. L. Talambutsaa

a Steklov Mathematical Institute, Russian Academy of Sciences
b Heinrich-Heine-Universität Düsseldorf
c Bielefeld University
References:
Abstract: Let $N$ be the stabilizer of the word $w=s_1t_1s_1^{-1}t_1^{-1}\dots s_gt_gs_g^{-1}t_g^{-1}$ in the group of automorphisms $\operatorname{Aut}(F_{2g})$ of the free group with generators $\{s_i,t_i\}_{i=1,\dots,g}$. The fundamental group $\pi_1(\Sigma_g)$ of a two-dimensional compact orientable closed surface of genus $g$ in generators $\{s_i,t_i\}$ is determined by the relation $w=1$. In the present paper, we find elements $S_i,T_i\in N$ determining the conjugation by the generators $s_i$, $t_i$ in $\operatorname{Aut}(\pi_1(\Sigma_g))$. Along with an element $\beta\in N$, realizing the conjugation by $w$, they generate the kernel of the natural epimorphism of the group $N$ on the mapping class group $M_{g,0}=\operatorname{Aut}(\pi_1(\Sigma_g))/\operatorname{Inn}(\pi_1(\Sigma_g))$. We find the system of defining relations for this kernel in the generators $S_1$, …, $S_g$, $T_1$, …, $T_g$, $\alpha$. In addition, we have found a subgroup in $N$ isomorphic to the braid group $B_g$ on $g$ strings, which, under the abelianizing of the free group $F_{2g}$, is mapped onto the subgroup of the Weyl group for $\operatorname{Sp}(2g,\mathbb{Z})$ consisting of matrices that contain only $0$ and $1$.
Keywords: mapping class group, closed compact orientable surface, fundamental group, automorphism, homeomorphism, generators and defining relations.
Received: 11.07.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 2, Pages 147–155
DOI: https://doi.org/10.1134/S0001434607010178
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: S. I. Adian, F. Grunevald, J. Mennicke, A. L. Talambutsa, “Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces”, Mat. Zametki, 81:2 (2007), 163–173; Math. Notes, 81:2 (2007), 147–155
Citation in format AMSBIB
\Bibitem{AdiGruMen07}
\by S.~I.~Adian, F.~Grunevald, J.~Mennicke, A.~L.~Talambutsa
\paper Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 2
\pages 163--173
\mathnet{http://mi.mathnet.ru/mzm3544}
\crossref{https://doi.org/10.4213/mzm3544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333876}
\zmath{https://zbmath.org/?q=an:1128.20021}
\elib{https://elibrary.ru/item.asp?id=9448924}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 2
\pages 147--155
\crossref{https://doi.org/10.1134/S0001434607010178}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947519998}
Linking options:
  • https://www.mathnet.ru/eng/mzm3544
  • https://doi.org/10.4213/mzm3544
  • https://www.mathnet.ru/eng/mzm/v81/i2/p163
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:735
    Full-text PDF :248
    References:72
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024