Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 1, Pages 153–156
DOI: https://doi.org/10.4213/mzm3529
(Mi mzm3529)
 

This article is cited in 9 scientific papers (total in 9 papers)

Brief Communications

On the Existence of Entire Solutions to a Class of Semilinear Elliptic Equations on Noncompact Riemann Manifolds

E. A. Mazepa

Volgograd State University
Full-text PDF (280 kB) Citations (9)
References:
Keywords: elliptic boundary-value problem, comparison principle, entire function, harmonic function, Riemann manifold, stochastic completeness.
Received: 12.12.2005
English version:
Mathematical Notes, 2007, Volume 81, Issue 1, Pages 135–139
DOI: https://doi.org/10.1134/S0001434607010154
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Mazepa, “On the Existence of Entire Solutions to a Class of Semilinear Elliptic Equations on Noncompact Riemann Manifolds”, Mat. Zametki, 81:1 (2007), 153–156; Math. Notes, 81:1 (2007), 135–139
Citation in format AMSBIB
\Bibitem{Maz07}
\by E.~A.~Mazepa
\paper On the Existence of Entire Solutions to a Class of Semilinear Elliptic Equations on Noncompact Riemann Manifolds
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 153--156
\mathnet{http://mi.mathnet.ru/mzm3529}
\crossref{https://doi.org/10.4213/mzm3529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333874}
\zmath{https://zbmath.org/?q=an:1127.58019}
\elib{https://elibrary.ru/item.asp?id=9429675}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 135--139
\crossref{https://doi.org/10.1134/S0001434607010154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947544488}
Linking options:
  • https://www.mathnet.ru/eng/mzm3529
  • https://doi.org/10.4213/mzm3529
  • https://www.mathnet.ru/eng/mzm/v81/i1/p153
  • This publication is cited in the following 9 articles:
    1. A. G. Losev, V. V. Filatov, “On capacitary characteristics of noncompact Riemannian manifolds”, Russian Math. (Iz. VUZ), 65:3 (2021), 61–67  mathnet  crossref  crossref  isi
    2. E. A. Mazepa, “O razreshimosti kraevykh zadach dlya kvazilineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Sib. elektron. matem. izv., 13 (2016), 1026–1034  mathnet  crossref  mathscinet  zmath
    3. E. A. Mazepa, “Approksimativnyi podkhod k postroeniyu reshenii kraevykh zadach na nekompaktnykh rimanovykh mnogoobraziyakh”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 5(30), 25–35  mathnet  crossref
    4. E. A. Mazepa, “Polozhitelnye resheniya kvazilineinykh ellipticheskikh neravenstv na rimanovykh proizvedeniyakh”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 6(31), 6–16  mathnet  crossref
    5. E. A. Mazepa, “The Liouville property and boundary value problems for semilinear elliptic equations on noncompact Riemannian manifolds”, Siberian Math. J., 53:1 (2012), 134–145  mathnet  crossref  mathscinet  isi
    6. Enstedt M., Melgaard M., “Abstract criteria for multiple solutions to nonlinear coupled equations involving magnetic Schrödinger operators”, J. Differential Equations, 253:6 (2012), 1729–1743  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Argaez C., Melgaard M., “Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry”, Nonlinear Anal., 75:1 (2012), 384–404  crossref  mathscinet  zmath  isi  elib  scopus
    8. Mazepa E.A., “Ob asimptoticheskom povedenii reshenii nekotorykh polulineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Vestn. Volgogradskogo gos. un-ta. Ser. 1. Matematika. Fizika, 2011, no. 1, 41–59  elib
    9. M. Enstedt, M. Melgaard, “Existence of Infinitely Many Distinct Solutions to the Quasirelativistic Hartree-Fock Equations”, International Journal of Mathematics and Mathematical Sciences, 2009 (2009), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :281
    References:85
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025