Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 1, Pages 32–42
DOI: https://doi.org/10.4213/mzm3515
(Mi mzm3515)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field

J. Brüninga, R. V. Nekrasova, A. I. Shafarevichb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (510 kB) Citations (6)
References:
Abstract: We use the semiclassical approach to study the spectral problem for the Schrödinger operator of a charged particle confined to a two-dimensional compact surface of constant negative curvature. We classify modes of classical motion in the integrable domain E<Ecr and obtain a classification of semiclassical solutions as a consequence. We construct a spectral series (spectrum part approximated by semiclassical eigenvalues) corresponding to energies not exceeding the threshold value Ecr; the degeneration multiplicity is computed for each eigenvalue.
Keywords: Schrödinger equation, eigenvalue asymptotics, semiclassical approximation, confined classical motion, surface of negative curvature, symplectic structure.
Received: 17.05.2006
Revised: 28.06.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 1, Pages 28–36
DOI: https://doi.org/10.1134/S0001434607010038
Bibliographic databases:
UDC: 517.958+530.145.6
Language: Russian
Citation: J. Brüning, R. V. Nekrasov, A. I. Shafarevich, “Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field”, Mat. Zametki, 81:1 (2007), 32–42; Math. Notes, 81:1 (2007), 28–36
Citation in format AMSBIB
\Bibitem{BruNekSha07}
\by J.~Br\"uning, R.~V.~Nekrasov, A.~I.~Shafarevich
\paper Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 32--42
\mathnet{http://mi.mathnet.ru/mzm3515}
\crossref{https://doi.org/10.4213/mzm3515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333862}
\zmath{https://zbmath.org/?q=an:1132.81033}
\elib{https://elibrary.ru/item.asp?id=9429663}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 28--36
\crossref{https://doi.org/10.1134/S0001434607010038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947514844}
Linking options:
  • https://www.mathnet.ru/eng/mzm3515
  • https://doi.org/10.4213/mzm3515
  • https://www.mathnet.ru/eng/mzm/v81/i1/p32
  • This publication is cited in the following 6 articles:
    1. I. A. Taimanov, “Geometry and quasiclassical quantization of magnetic monopoles”, Theoret. and Math. Phys., 218:1 (2024), 129–144  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Yuri A. Kordyukov, Iskander A. Taimanov, “Trace Formula for the Magnetic Laplacian on a Compact Hyperbolic Surface”, Regul. Chaotic Dyn., 27:4 (2022), 460–476  mathnet  crossref  mathscinet
    3. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Yu. A. Kordyukov, I. A. Taimanov, “Quasi-classical approximation for magnetic monopoles”, Russian Math. Surveys, 75:6 (2020), 1067–1088  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Russian Math. Surveys, 74:2 (2019), 325–361  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Brüning J., Dobrokhotov S. Yu., Nekrasov R. V., “Quantum dynamics in a thin film. II. Stationary states”, Russ. J. Math. Phys., 16:4 (2009), 467–477  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:530
    Full-text PDF :251
    References:87
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025