Abstract:
We use the semiclassical approach to study the spectral problem for the Schrödinger operator of a charged particle confined to a two-dimensional compact surface of constant negative curvature. We classify modes of classical motion in the integrable domain E<Ecr
and obtain a classification of semiclassical solutions as a consequence. We construct a spectral series (spectrum part approximated by semiclassical eigenvalues) corresponding to energies not exceeding the threshold value Ecr; the degeneration multiplicity
is computed for each eigenvalue.
Citation:
J. Brüning, R. V. Nekrasov, A. I. Shafarevich, “Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field”, Mat. Zametki, 81:1 (2007), 32–42; Math. Notes, 81:1 (2007), 28–36
\Bibitem{BruNekSha07}
\by J.~Br\"uning, R.~V.~Nekrasov, A.~I.~Shafarevich
\paper Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 32--42
\mathnet{http://mi.mathnet.ru/mzm3515}
\crossref{https://doi.org/10.4213/mzm3515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333862}
\zmath{https://zbmath.org/?q=an:1132.81033}
\elib{https://elibrary.ru/item.asp?id=9429663}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 28--36
\crossref{https://doi.org/10.1134/S0001434607010038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947514844}
Linking options:
https://www.mathnet.ru/eng/mzm3515
https://doi.org/10.4213/mzm3515
https://www.mathnet.ru/eng/mzm/v81/i1/p32
This publication is cited in the following 6 articles:
I. A. Taimanov, “Geometry and quasiclassical quantization of magnetic monopoles”, Theoret. and Math. Phys., 218:1 (2024), 129–144
Yuri A. Kordyukov, Iskander A. Taimanov, “Trace Formula for the Magnetic Laplacian on a Compact
Hyperbolic Surface”, Regul. Chaotic Dyn., 27:4 (2022), 460–476
S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819
Yu. A. Kordyukov, I. A. Taimanov, “Quasi-classical approximation for magnetic monopoles”, Russian Math. Surveys, 75:6 (2020), 1067–1088
Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Russian Math. Surveys, 74:2 (2019), 325–361
Brüning J., Dobrokhotov S. Yu., Nekrasov R. V., “Quantum dynamics in a thin film. II. Stationary states”, Russ. J. Math. Phys., 16:4 (2009), 467–477