Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 3, Pages 323–341
DOI: https://doi.org/10.4213/mzm35
(Mi mzm35)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation

V. V. Basov

Saint-Petersburg State University
Full-text PDF (280 kB) Citations (1)
References:
Abstract: We consider the following real autonomous system of $2d$ differential equations with a small positive parameter $\varepsilon $:
$$ \dot x_i=x_{i+d}+X_i^{(n+1)}(x,\varepsilon ),\qquad \dot x_{i+d}=-x_i^{2n-1}+X_{i+d}^{(2n)}(x,\varepsilon ),\qquad i=1,\dots,d, $$
where $d\ge 2$, $n\ge 2$, and the $X_j^{(k)}$ are continuous functions continuously differentiable with respect to $x$ and $\varepsilon $ the required number of times in the neighborhood of zero; their expansion begins with order $k$ if we assume that the variables $x_i$ are of first order of smallness, $\varepsilon $ is of second order, and the variables $x_{i+d}$ are of order $n$. We write out a finite number of explicit conditions on the coefficients of the lower terms in the expansion of the right-hand side of this system guaranteeing that for any sufficiently small $\varepsilon > 0$ the system has one or several $d$-dimensional invariant tori with infinitely small frequencies of motions on them.
Received: 24.12.2002
Revised: 11.06.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 3, Pages 297–314
DOI: https://doi.org/10.1023/B:MATN.0000023309.07316.66
Bibliographic databases:
UDC: 517.925
Language: Russian
Citation: V. V. Basov, “Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation”, Mat. Zametki, 75:3 (2004), 323–341; Math. Notes, 75:3 (2004), 297–314
Citation in format AMSBIB
\Bibitem{Bas04}
\by V.~V.~Basov
\paper Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 323--341
\mathnet{http://mi.mathnet.ru/mzm35}
\crossref{https://doi.org/10.4213/mzm35}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068796}
\zmath{https://zbmath.org/?q=an:1058.37038}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 297--314
\crossref{https://doi.org/10.1023/B:MATN.0000023309.07316.66}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900001}
Linking options:
  • https://www.mathnet.ru/eng/mzm35
  • https://doi.org/10.4213/mzm35
  • https://www.mathnet.ru/eng/mzm/v75/i3/p323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024