Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 2, Pages 239–253
DOI: https://doi.org/10.4213/mzm343
(Mi mzm343)
 

This article is cited in 20 scientific papers (total in 20 papers)

Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets

I. Ya. Novikov

Voronezh State University
References:
Abstract: This paper is devoted to the study of the asymptotics of roots of a sequence of Bernstein polynomials approximating a piecewise linear function. This sequence arises in the construction of modified compactly supported wavelets that, in contrast to classical Daubechies wavelets, preserve localization with the growth of smoothness. It is proved that the limiting curve for roots is the boundary of the domain of convergence of the Bernstein polynomials on the complex plane.
Received: 08.06.2000
English version:
Mathematical Notes, 2002, Volume 71, Issue 2, Pages 217–229
DOI: https://doi.org/10.1023/A:1013959231555
Bibliographic databases:
UDC: 517.518.865
Language: Russian
Citation: I. Ya. Novikov, “Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets”, Mat. Zametki, 71:2 (2002), 239–253; Math. Notes, 71:2 (2002), 217–229
Citation in format AMSBIB
\Bibitem{Nov02}
\by I.~Ya.~Novikov
\paper Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 2
\pages 239--253
\mathnet{http://mi.mathnet.ru/mzm343}
\crossref{https://doi.org/10.4213/mzm343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900797}
\zmath{https://zbmath.org/?q=an:1034.42040}
\elib{https://elibrary.ru/item.asp?id=5024784}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 2
\pages 217--229
\crossref{https://doi.org/10.1023/A:1013959231555}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174101600024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141848493}
Linking options:
  • https://www.mathnet.ru/eng/mzm343
  • https://doi.org/10.4213/mzm343
  • https://www.mathnet.ru/eng/mzm/v71/i2/p239
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:533
    Full-text PDF :271
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024