Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 2, Pages 194–213
DOI: https://doi.org/10.4213/mzm339
(Mi mzm339)
 

This article is cited in 97 scientific papers (total in 97 papers)

Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems

M. I. Vishik, V. V. Chepyzhov

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: We construct the trajectory attractor $\mathfrak A$ of a three-dimensional Navier–Stokes system with exciting force $g(x)\in H$. The set $\mathfrak A$ consists of a class of solutions to this system which are bounded in $H$, defined on the positive semi-infinite interval $\mathbb R_+$ of the time axis, and can be extended to the entire time axis $\mathbb R$ so that they still remain bounded-in-$H$ solutions of the Navier–Stokes system. In this case any family of bounded-in-$L_\infty (\mathbb R_+;H)$ solutions of this system comes arbitrary close to the trajectory attractor $\mathfrak A$. We prove that the solutions $\{u(x,t), t\ge 0\}$ are continuous in $t$ if they are treated in the space of functions ranging in $H^{-\delta }$, $0<\delta \le 1$. The restriction of the trajectory attractor $\mathfrak A$ to $t=0$, $\mathfrak A|_{t=0}=:\mathscr A$, is called the global attractor of the Navier–Stokes system. We prove that the global attractor $\mathscr A$ thus defined possesses properties typical of well-known global attractors of evolution equations. We also prove that as $m\to \infty $ the trajectory attractors $\mathfrak A_m$ and the global attractors $\mathscr A_m$ of the $m$-order Galerkin approximations of the Navier–Stokes system converge to the trajectory and global attractors $\mathfrak A$ and $\mathscr A$, respectively. Similar problems are studied for the cases of an exciting force of the form $g=g(x,t)$ depending on time $t$ and of an external force $g$ rapidly oscillating with respect to the spatial variables or with respect to time $t$.
Received: 23.03.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 2, Pages 177–193
DOI: https://doi.org/10.1023/A:1014190629738
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. I. Vishik, V. V. Chepyzhov, “Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems”, Mat. Zametki, 71:2 (2002), 194–213; Math. Notes, 71:2 (2002), 177–193
Citation in format AMSBIB
\Bibitem{VisChe02}
\by M.~I.~Vishik, V.~V.~Chepyzhov
\paper Trajectory and Global Attractors of Three-Dimensional Navier--Stokes Systems
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 2
\pages 194--213
\mathnet{http://mi.mathnet.ru/mzm339}
\crossref{https://doi.org/10.4213/mzm339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900793}
\zmath{https://zbmath.org/?q=an:1130.37404}
\elib{https://elibrary.ru/item.asp?id=13812606}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 2
\pages 177--193
\crossref{https://doi.org/10.1023/A:1014190629738}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174101600020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141736942}
Linking options:
  • https://www.mathnet.ru/eng/mzm339
  • https://doi.org/10.4213/mzm339
  • https://www.mathnet.ru/eng/mzm/v71/i2/p194
  • This publication is cited in the following 97 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1113
    Full-text PDF :421
    References:111
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024