Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 6, Pages 926–933
DOI: https://doi.org/10.4213/mzm3368
(Mi mzm3368)
 

This article is cited in 1 scientific paper (total in 1 paper)

On $\sigma$-algebras related to the measurability of compositions

I. V. Shragin
Full-text PDF (428 kB) Citations (1)
References:
Abstract: Given a measurable space $(T,\mathscr T)$, a set $X$, and a map $\varphi\colon T\to X$, the $\sigma$-algebras
$$ \mathfrak N_\varphi=\{B\subset X:\varphi^{-1}(B)\in\mathscr T\},\qquad \mathfrak M_\varphi=\{D\subset T\times X:G_\varphi^{-1}(D)\in\mathscr T\}, $$
$\mathfrak N_\Phi=\bigcap_{\varphi\in\Phi}\mathfrak N_\varphi$, and $\mathfrak M_\Phi=\bigcap_{\varphi\in\Phi}\mathfrak M_\varphi$, where $G_\varphi(t)=(t,\varphi(t))$ and $\Phi\subset X^T$, are considered. These $\sigma$-algebras are used to characterize the $(\mathscr T,\mathscr B)$-measurability of the compositions $g\circ\varphi$ and $f\circ G_\varphi$, where $g\colon X\to Y$, $f\colon T\times X\to Y$, and $(Y,\mathscr B)$ is a measurable space. Their elements are described without using the operations $\varphi^{-1}$ and $G_\varphi^{-1}$.
Received: 20.10.2003
English version:
Mathematical Notes, 2006, Volume 80, Issue 6, Pages 868–874
DOI: https://doi.org/10.1007/s11006-006-0209-1
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: I. V. Shragin, “On $\sigma$-algebras related to the measurability of compositions”, Mat. Zametki, 80:6 (2006), 926–933; Math. Notes, 80:6 (2006), 868–874
Citation in format AMSBIB
\Bibitem{Shr06}
\by I.~V.~Shragin
\paper On $\sigma$-algebras related to the measurability of compositions
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 6
\pages 926--933
\mathnet{http://mi.mathnet.ru/mzm3368}
\crossref{https://doi.org/10.4213/mzm3368}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311619}
\zmath{https://zbmath.org/?q=an:1142.28002}
\elib{https://elibrary.ru/item.asp?id=9429655}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 6
\pages 868--874
\crossref{https://doi.org/10.1007/s11006-006-0209-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845630827}
Linking options:
  • https://www.mathnet.ru/eng/mzm3368
  • https://doi.org/10.4213/mzm3368
  • https://www.mathnet.ru/eng/mzm/v80/i6/p926
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :188
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024