Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 6, Pages 864–884
DOI: https://doi.org/10.4213/mzm3363
(Mi mzm3363)
 

This article is cited in 57 scientific papers (total in 57 papers)

On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces

A. M. Savchuk, A. A. Shkalikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the asymptotic behavior of the eigenvalues the Sturm–Liouville operator $Ly= -y'' +q(x)y$ with potentials from the Sobolev space $W_2^{\theta-1}$, $\theta\ge0$, including the nonclassical case $\theta\in[0,1)$ in which the potential is a distribution. The results are obtained in new terms. Let $s_{2k}(q)=\lambda_{k}^{1/2}(q)-k$, $s_{2k-1}(q)=\mu_{k}^{1/2}(q)-k-1/2$, where $\{\lambda_k\}_1^{\infty}$ and $\{\mu_k\}_1^{\infty}$ are the sequences of eigenvalues of the operator $L$ generated by the Dirichlet and Dirichlet–Neumann boundary conditions, respectively. We construct special Hilbert spaces $\hat\ell_2^{\,\theta}$ such that the mapping $F\colon W^{\theta-1}_2\to\hat\ell_2^{\,\theta}$ defined by the equality $F(q)=\{s_n\}_1^{\infty}$ is well defined for all $\theta\ge0$. The main result is as follows: for $\theta>0$, the mapping $F$ is weakly nonlinear, i.e., can be expressed as $F(q)=Uq+\Phi(q)$, where $U$ is the isomorphism of the spaces $W^{\theta-1}_2$ and $\hat\ell_2^{\,\theta}$, and $\Phi(q)$ is a compact mapping. Moreover, we prove the estimate $\|\Phi(q)\|_{\tau}\le C\|q\|_{\theta-1}$, where the exact value of $\tau=\tau(\theta)>\theta-1$ is given and the constant $C$ depends only on the radius of the ball $\|q\|_{\theta-1}\le R$, but is independent of the function $q$ varying in this ball.
Received: 28.06.2006
Revised: 18.07.2006
English version:
Mathematical Notes, 2006, Volume 80, Issue 6, Pages 814–832
DOI: https://doi.org/10.1007/s11006-006-0204-6
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces”, Mat. Zametki, 80:6 (2006), 864–884; Math. Notes, 80:6 (2006), 814–832
Citation in format AMSBIB
\Bibitem{SavShk06}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 6
\pages 864--884
\mathnet{http://mi.mathnet.ru/mzm3363}
\crossref{https://doi.org/10.4213/mzm3363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311614}
\zmath{https://zbmath.org/?q=an:1129.34055}
\elib{https://elibrary.ru/item.asp?id=9429650}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 6
\pages 814--832
\crossref{https://doi.org/10.1007/s11006-006-0204-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845638422}
Linking options:
  • https://www.mathnet.ru/eng/mzm3363
  • https://doi.org/10.4213/mzm3363
  • https://www.mathnet.ru/eng/mzm/v80/i6/p864
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1216
    Full-text PDF :439
    References:74
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024