Abstract:
It is shown that any interpolation scales joining weight spaces Lp or similar spaces have many remarkable properties. Not only are such scales intrinsically interpolation scales, but an analog of the Arazy–Cwikel theorem describing interpolation spaces between the spaces from the scale is valid.
Citation:
Yu. N. Bykov, V. I. Ovchinnikov, “Interpolation properties of scales of Banach spaces”, Mat. Zametki, 80:6 (2006), 803–813; Math. Notes, 80:6 (2006), 761–769
This publication is cited in the following 4 articles:
Sergey V. Astashkin, Michael Cwikel, Per G. Nilsson, “Arazy–Cwikel and Calderón–Mityagin type properties of the couples $(\ell ^{p},\ell ^{q})$, $0\le p<q\le \infty $”, Annali di Matematica, 202:4 (2023), 1643
Sergey V. Astashkin, Per G. Nilsson, “Arazy-Cwikel property for quasi-banach couples”, Positivity, 26:4 (2022)
Kussainova L., Ospanova A., “Interpolation Theorems For Weighted Sobolev Spaces”, World Congress on Engineering, Wce 2015, Vol i, Lecture Notes in Engineering and Computer Science, eds. Ao S., Gelman L., Hukins D., Hunter A., Korsunsky A., Int Assoc Engineers-Iaeng, 2015, 25–28
Gogatishvili A., Ovchinnikov V. I., “Interpolation orbits and optimal Sobolev's embeddings”, J. Funct. Anal., 253:1 (2007), 1–17