Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 1, Pages 122–129
DOI: https://doi.org/10.4213/mzm333
(Mi mzm333)
 

This article is cited in 1 scientific paper (total in 1 paper)

On $\operatorname {c}$-3-Transitive Automorphism Groups of Cyclically Ordered Sets

V. M. Tararin

Institute of Applied Mathematical Research, Karelian Research Centre, RAS
Full-text PDF (191 kB) Citations (1)
References:
Abstract: An automorphism group $G$ of a cyclically ordered set $\langle X,C\rangle $ is said to be $\operatorname {c}$-3-transitive if for any elements $x_i,y_i\in X$ ($i=1,2,3$), such that $C(x_1,x_2,x_3)$ and $C(y_1,y_2,y_3)$ there exists an element $g\in G$ satisfying $g(x_i)=y_i$, $i=1,2,3$. We prove that if an automorphism group of a cyclically ordered set is $\operatorname {c}$-3-transitive, then it is simple. A description of $\operatorname {c}$-3-transitive automorphism groups with Abelian two-point stabilizer is given.
Received: 16.03.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 1, Pages 110–117
DOI: https://doi.org/10.1023/A:1013934509265
Bibliographic databases:
UDC: 512.544.43
Language: Russian
Citation: V. M. Tararin, “On $\operatorname {c}$-3-Transitive Automorphism Groups of Cyclically Ordered Sets”, Mat. Zametki, 71:1 (2002), 122–129; Math. Notes, 71:1 (2002), 110–117
Citation in format AMSBIB
\Bibitem{Tar02}
\by V.~M.~Tararin
\paper On $\operatorname {c}$-3-Transitive Automorphism Groups of Cyclically Ordered Sets
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 1
\pages 122--129
\mathnet{http://mi.mathnet.ru/mzm333}
\crossref{https://doi.org/10.4213/mzm333}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900452}
\zmath{https://zbmath.org/?q=an:1055.20001}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 1
\pages 110--117
\crossref{https://doi.org/10.1023/A:1013934509265}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174101600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141625156}
Linking options:
  • https://www.mathnet.ru/eng/mzm333
  • https://doi.org/10.4213/mzm333
  • https://www.mathnet.ru/eng/mzm/v71/i1/p122
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:952
    Full-text PDF :223
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024