Abstract:
We prove the following theorem: in Hilbert space a closed bounded set is contained in the strongly convex R-hull of its R-strong extreme points. R-strong extreme points are a subset of the set of extreme points (it may happen that these two sets do not coincide); the strongly convex R-hull of a set contains the closure of the convex hull of the set.
Citation:
M. V. Balashov, “An Analog of the Krein–Mil'man Theorem for Strongly Convex Hulls in Hilbert Space”, Mat. Zametki, 71:1 (2002), 37–42; Math. Notes, 71:1 (2002), 34–38
\Bibitem{Bal02}
\by M.~V.~Balashov
\paper An Analog of the Krein--Mil'man Theorem for Strongly Convex Hulls in Hilbert Space
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 1
\pages 37--42
\mathnet{http://mi.mathnet.ru/mzm326}
\crossref{https://doi.org/10.4213/mzm326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900445}
\zmath{https://zbmath.org/?q=an:1028.46026}
\elib{https://elibrary.ru/item.asp?id=5024764}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 1
\pages 34--38
\crossref{https://doi.org/10.1023/A:1013970122469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174101600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141625154}
Linking options:
https://www.mathnet.ru/eng/mzm326
https://doi.org/10.4213/mzm326
https://www.mathnet.ru/eng/mzm/v71/i1/p37
This publication is cited in the following 4 articles:
Shenawy S., “Convex and Starshaped Sets in Manifolds Without Conjugate Points”, Int. Electron. J. Geom., 12:2 (2019), 223–228
Jahn T. Martini H. Richter Ch., “Ball Convex Bodies in Minkowski Spaces”, Pac. J. Math., 289:2 (2017), 287–316
F. S. Stonyakin, “Sequential analogues of the Lyapunov and Krein–Milman theorems in Fréchet spaces”, Journal of Mathematical Sciences, 225:2 (2017), 322–344
Balashov M.V., “Antidistance and Antiprojection in the Hilbert Space”, J. Convex Anal., 22:2 (2015), 521–536