Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1991, Volume 50, Issue 4, Pages 88–95 (Mi mzm3089)  

This article is cited in 11 scientific papers (total in 11 papers)

Geometry of the spectrum of the one-dimensional Schrödinger equation with a periodic complex-valued potential

L. A. Pastur, V. A. Tkachenko

Physical Engineering Institute of Low Temperatures, UkrSSR Academy of Sciences
Received: 14.06.1990
English version:
Mathematical Notes, 1991, Volume 50, Issue 4, Pages 1045–1050
DOI: https://doi.org/10.1007/BF01137736
Bibliographic databases:
UDC: 517
Language: Russian
Citation: L. A. Pastur, V. A. Tkachenko, “Geometry of the spectrum of the one-dimensional Schrödinger equation with a periodic complex-valued potential”, Mat. Zametki, 50:4 (1991), 88–95; Math. Notes, 50:4 (1991), 1045–1050
Citation in format AMSBIB
\Bibitem{PasTka91}
\by L.~A.~Pastur, V.~A.~Tkachenko
\paper Geometry of the spectrum of the one-dimensional Schr\"odinger equation with a periodic complex-valued potential
\jour Mat. Zametki
\yr 1991
\vol 50
\issue 4
\pages 88--95
\mathnet{http://mi.mathnet.ru/mzm3089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1162916}
\zmath{https://zbmath.org/?q=an:0781.34054|0738.34046}
\transl
\jour Math. Notes
\yr 1991
\vol 50
\issue 4
\pages 1045--1050
\crossref{https://doi.org/10.1007/BF01137736}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HY49500034}
Linking options:
  • https://www.mathnet.ru/eng/mzm3089
  • https://www.mathnet.ru/eng/mzm/v50/i4/p88
  • This publication is cited in the following 11 articles:
    1. Hui Lu, Jiangong You, “Global structure of spectra of periodic non-Hermitian Jacobi operators”, Sci. China Math., 2024  crossref
    2. Oktay Veliev, Non-self-adjoint Schrödinger Operator with a Periodic Potential, 2021, 15  crossref
    3. William A. Haese-Hill, Martin A. Hallnäs, Alexander P. Veselov, “On the Spectra of Real and Complex Lamé Operators”, SIGMA, 13 (2017), 049, 23 pp.  mathnet  crossref
    4. Gesztesy F. Tkachenko V., “A Schauder and Riesz Basis Criterion for Non-Self-Adjoint Schrodinger Operators with Periodic and Antiperiodic Boundary Conditions”, J. Differ. Equ., 253:2 (2012), 400–437  crossref  isi
    5. S. Longhi, “Spectral singularities and Bragg scattering in complex crystals”, Phys. Rev. A, 81:2 (2010)  crossref
    6. Fritz Gesztesy, Vadim Trachenko, “A criterion for Hill operators to be spectral operators of scalar type”, J Anal Math, 107:1 (2009), 287  crossref
    7. Fritz Gesztesy, Vadim Tkachenko, “When is a non-self-adjoint Hill operator a spectral operator of scalar type?⁎⁎Based upon work supported by the US National Science Foundation under Grant No. DMS-0405526 and the Research Council and the Office of Research of the University of Missouri–Columbia.”, Comptes Rendus. Mathématique, 343:4 (2006), 239  crossref
    8. Volodymyr Batchenko, Fritz Gesztesy, “On the spectrum of Schrödinger operators with quasi-periodic algebro-geometric KDV potentials”, J. Anal. Math., 95:1 (2005), 333  crossref
    9. Gesztesy, F, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - An analytic approach”, Bulletin of the American Mathematical Society, 35:4 (1998), 271  crossref  mathscinet  zmath  isi
    10. A. L. Mironov, V. L. Oleinik, “Limits of applicability of the tight binding approximation for complex-valued potential function”, Theoret. and Math. Phys., 112:3 (1997), 1157–1171  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Fritz Gesztesy, Rudi Weikard, “Picard potentials and Hill's equation on a torus”, Acta Math., 176:1 (1996), 73  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:439
    Full-text PDF :154
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025