Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 4, Pages 536–545
DOI: https://doi.org/10.4213/mzm2846
(Mi mzm2846)
 

This article is cited in 1 scientific paper (total in 1 paper)

When is an Abelian group isomorphic to its endomorphism group?

E. M. Kolenova, A. M. Sebel'din

Nizhny Novgorod State Pedagogical University
Full-text PDF (426 kB) Citations (1)
References:
Abstract: In the paper, necessary and sufficient conditions for an Abelian group $A$ to be isomorphic to the endomorphism group $\operatorname{End}(A)$ are obtained. The classes of periodic Abelian groups, divisible Abelian groups, nonreduced Abelian groups, and reduced algebraically compact Abelian groups are considered. For certain classes of Abelian groups, the isomorphism problem for a group and its endomorphism group is solved under the assumption that the endomorphism group itself has the corresponding property.
Received: 08.10.2004
Revised: 23.03.2006
English version:
Mathematical Notes, 2006, Volume 80, Issue 4, Pages 509–517
DOI: https://doi.org/10.1007/s11006-006-0169-5
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: E. M. Kolenova, A. M. Sebel'din, “When is an Abelian group isomorphic to its endomorphism group?”, Mat. Zametki, 80:4 (2006), 536–545; Math. Notes, 80:4 (2006), 509–517
Citation in format AMSBIB
\Bibitem{KolSeb06}
\by E.~M.~Kolenova, A.~M.~Sebel'din
\paper When is an Abelian group isomorphic to its endomorphism group?
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 4
\pages 536--545
\mathnet{http://mi.mathnet.ru/mzm2846}
\crossref{https://doi.org/10.4213/mzm2846}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314362}
\zmath{https://zbmath.org/?q=an:1122.20028}
\elib{https://elibrary.ru/item.asp?id=9293159}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 4
\pages 509--517
\crossref{https://doi.org/10.1007/s11006-006-0169-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241868700028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750295315}
Linking options:
  • https://www.mathnet.ru/eng/mzm2846
  • https://doi.org/10.4213/mzm2846
  • https://www.mathnet.ru/eng/mzm/v80/i4/p536
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:620
    Full-text PDF :238
    References:87
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024