Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 3, Pages 356–366
DOI: https://doi.org/10.4213/mzm2821
(Mi mzm2821)
 

This article is cited in 11 scientific papers (total in 11 papers)

Spectrum and Pseudospectrum of non-self-adjoint Schrödinger Operators with Periodic Coefficients

S. V. Galtsev, A. I. Shafarevich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the pseudospectrum of the non-self-adjoint operator
$$ \mathfrak D=-h^2\frac{d^2}{dx^2}+iV(x), $$
where $V(x)$ is a periodic entire analytic function, real on the real axis, with a real period $T$. In this operator, $h$ is treated as a small parameter. We show that the pseudospectrum of this operator is the closure of its numerical image, i.e., a half-strip in $\mathbb C$. In this case, the pseudoeigenfunctions, i.e., the functions $\varphi(h,x)$ satisfying the condition
$$ \|\mathfrak D\varphi-\lambda\varphi\|=O(h^N), \qquad \|\varphi\|=1, \quad N\in\mathbb N, $$
can be constructed explicitly. Thus, it turns out that the pseudospectrum of the operator under study is much wider than its spectrum.
Keywords: spectrum, pseudospectrum, Schrödinger operator, periodicity condition, periodic entire analytic function, non-self-adjoint operator, Riemann surface.
Received: 14.12.2005
Revised: 16.03.2006
English version:
Mathematical Notes, 2006, Volume 80, Issue 3, Pages 345–354
DOI: https://doi.org/10.1007/s11006-006-0146-z
Bibliographic databases:
UDC: 517.984.55+514.84
Language: Russian
Citation: S. V. Galtsev, A. I. Shafarevich, “Spectrum and Pseudospectrum of non-self-adjoint Schrödinger Operators with Periodic Coefficients”, Mat. Zametki, 80:3 (2006), 356–366; Math. Notes, 80:3 (2006), 345–354
Citation in format AMSBIB
\Bibitem{GalSha06}
\by S.~V.~Galtsev, A.~I.~Shafarevich
\paper Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 3
\pages 356--366
\mathnet{http://mi.mathnet.ru/mzm2821}
\crossref{https://doi.org/10.4213/mzm2821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2278879}
\zmath{https://zbmath.org/?q=an:1128.47042}
\elib{https://elibrary.ru/item.asp?id=9274864}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 3
\pages 345--354
\crossref{https://doi.org/10.1007/s11006-006-0146-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241868700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750298927}
Linking options:
  • https://www.mathnet.ru/eng/mzm2821
  • https://doi.org/10.4213/mzm2821
  • https://www.mathnet.ru/eng/mzm/v80/i3/p356
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024