Abstract:
We introduce the notion of contactly geodesic transformation of
the metric of an almost-contact metric structure as a contact
analog of holomorphically geodesic transformations of the metric
of an almost-Hermitian structure.
A series of invariants of such
transformations is obtained.
We prove that such transformations
preserve the normality property of an almost-contact metric
structure.
We prove that cosymplectic and Sasakian manifolds, as
well as Kenmotsu manifolds, do not admit nontrivial contactly
geodesic transformations of the metric, which is a contact analog
of the well-known result for Kählerian manifolds due to Westlake
and Yano.
Citation:
V. F. Kirichenko, N. N. Dondukova, “Contactly Geodesic Transformations
of Almost-Contact Metric Structures”, Mat. Zametki, 80:2 (2006), 209–219; Math. Notes, 80:2 (2006), 204–213
This publication is cited in the following 11 articles:
O. E. Arseneva, M. B. Banaru, M. P. Burlakov, N. I. Guseva, A. R. Rustanov, S. V. Kharitonova, A.M. Shelekhov, “Vadim Fedorovich Kirichenko”, Materialy Mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Levona Sergeevicha Atanasyana (15 iyulya 1921 g.—5 iyulya 1998 g.).
Moskva, 1–4 noyabrya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 220, VINITI RAN, M., 2023, 3–16
Mohammed Y. Abass, “A Review on Cartan's Structure Equations for Certain Classes of Almost Contact Metric Manifolds”, Basrah Researches Sciences, 49.2:2 (2023), 1
M. Y. Abass, Q. S. Al-Zamil, “On Weyl tensor of ACR-manifolds of class C12 with applications”, Izv. IMI UdGU, 59 (2022), 3–14
Abood H.M., Abass M.Y., “A Study of New Class of Almost Contact Metric Manifolds of Kenmotsu Type”, Tamkang J. Math., 52:2 (2021), 253–266
Blaga A.M., “Conformal and Paracontactly Geodesic Transformations of Almost Paracontact Metric Structures”, Facta Univ-Ser. Math. Informat., 35:1 (2020), 121–130
A Abu-Saleem, I D Kochetkov, A R Rustanov, “Structural tensors of generalized Kenmotsu manifolds”, IOP Conf. Ser.: Mater. Sci. Eng., 918:1 (2020), 012063
A. Abu-Saleem, A. R. Rustanov, S. V. Kharitonova, “Svoistva integriruemosti obobschennykh mnogoobrazii Kenmotsu”, Vladikavk. matem. zhurn., 20:3 (2018), 4–20
A. V. Nikiforova, “Invarianty obobschennykh f-preobrazovanii pochti kontaktnykh metricheskikh struktur”, Chebyshevskii sb., 18:2 (2017), 173–182
L. A. Ignatochkina, “Generalization for transformations of T1-bundle which induced by conformal transformations of their base”, Sb. Math., 202:5 (2011), 665–682
V. F. Kirichenko, E. A. Pol'kina, “Geodesic rigidity of certain classes of almost contact metric manifolds”, Russian Math. (Iz. VUZ), 51:9 (2007), 37–44