Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 2, Pages 163–170
DOI: https://doi.org/10.4213/mzm2795
(Mi mzm2795)
 

This article is cited in 13 scientific papers (total in 13 papers)

On Farthest Points of Sets

M. V. Balashov, G. E. Ivanov

Moscow Institute of Physics and Technology
References:
Abstract: For a convex closed bounded set in a Banach space, we study the existence and uniqueness problem for a point of this set that is the farthest point from a given point in space. In terms of the existence and uniqueness of the farthest point, as well as the Lipschitzian dependence of this point on a point in space, we obtain necessary and sufficient conditions for the strong convexity of a set in several infinite-dimensional spaces, in particular, in a Hilbert space. A set representable as the intersection of closed balls of a fixed radius is called a strongly convex set. We show that the condition “for each point in space that is sufficiently far from a set, there exists a unique farthest point of the set” is a criterion for the strong convexity of a set in a finite-dimensional normed space, where the norm ball is a strongly convex set and a generating set.
Keywords: farthest point, existence and uniqueness problem, strong convexity, Hilbert space, reflexive Banach space, proximity function.
Received: 28.03.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 2, Pages 159–166
DOI: https://doi.org/10.1007/s11006-006-0123-6
Bibliographic databases:
UDC: 517.982.252, 517.982.256
Language: Russian
Citation: M. V. Balashov, G. E. Ivanov, “On Farthest Points of Sets”, Mat. Zametki, 80:2 (2006), 163–170; Math. Notes, 80:2 (2006), 159–166
Citation in format AMSBIB
\Bibitem{BalIva06}
\by M.~V.~Balashov, G.~E.~Ivanov
\paper On Farthest Points of Sets
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 2
\pages 163--170
\mathnet{http://mi.mathnet.ru/mzm2795}
\crossref{https://doi.org/10.4213/mzm2795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2281367}
\zmath{https://zbmath.org/?q=an:1124.46007}
\elib{https://elibrary.ru/item.asp?id=9274841}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 2
\pages 159--166
\crossref{https://doi.org/10.1007/s11006-006-0123-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747492756}
Linking options:
  • https://www.mathnet.ru/eng/mzm2795
  • https://doi.org/10.4213/mzm2795
  • https://www.mathnet.ru/eng/mzm/v80/i2/p163
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:572
    Full-text PDF :201
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024