Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 1, Pages 115–118
DOI: https://doi.org/10.4213/mzm2786
(Mi mzm2786)
 

This article is cited in 5 scientific papers (total in 5 papers)

On Some Properties of Systems of Volterra Integral Equations of the Fourth Kind with Kernel of Convolution Type

V. F. Chistyakov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (360 kB) Citations (5)
References:
Abstract: We consider the system of integral equations of the form $Ax+Vx=\nobreak \psi$, where $V$ is the Volterra operator with kernel of convolution type and $A$ is a constant matrix, $\det A=\nobreak 0$. We prove an existence theorem and establish necessary and sufficient conditions for the kernel of the operator of the system to be trivial.
Keywords: Volterra integral equation, convolution-type kernel, left regularizing operator, Fredholm operator, integro-differential operator.
Received: 13.11.2003
Revised: 28.11.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 1, Pages 109–113
DOI: https://doi.org/10.1007/s11006-006-0114-7
Bibliographic databases:
UDC: 517.968
Language: Russian
Citation: V. F. Chistyakov, “On Some Properties of Systems of Volterra Integral Equations of the Fourth Kind with Kernel of Convolution Type”, Mat. Zametki, 80:1 (2006), 115–118; Math. Notes, 80:1 (2006), 109–113
Citation in format AMSBIB
\Bibitem{Chi06}
\by V.~F.~Chistyakov
\paper On Some Properties of Systems
of Volterra Integral Equations of the Fourth Kind
with Kernel of Convolution Type
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 115--118
\mathnet{http://mi.mathnet.ru/mzm2786}
\crossref{https://doi.org/10.4213/mzm2786}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280744}
\zmath{https://zbmath.org/?q=an:1120.45001}
\elib{https://elibrary.ru/item.asp?id=9281629}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 109--113
\crossref{https://doi.org/10.1007/s11006-006-0114-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747484567}
Linking options:
  • https://www.mathnet.ru/eng/mzm2786
  • https://doi.org/10.4213/mzm2786
  • https://www.mathnet.ru/eng/mzm/v80/i1/p115
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :246
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024