Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 1, Pages 50–59
DOI: https://doi.org/10.4213/mzm2779
(Mi mzm2779)
 

This article is cited in 12 scientific papers (total in 12 papers)

Everywhere Divergent Φ-Means of Fourier Series

G. A. Karagulian

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: For a function fL1(T), we investigate the sequence (C,1) of mean values Φ(|Sk(x,f)f(x)|), where Φ(t):[0,+)[0,+\nobreak), Φ(0)=\nobreak0, is a continuous increasing function. We prove that if Φ increases faster than exponentially, then these means can diverge everywhere. Divergence almost everywhere of such means was established earlier.
Keywords: Fourier series, means of Fourier series, the space L1(T).
Received: 28.04.2005
Revised: 07.10.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 1, Pages 47–56
DOI: https://doi.org/10.1007/s11006-006-0107-6
Bibliographic databases:
UDC: 517
Language: Russian
Citation: G. A. Karagulian, “Everywhere Divergent Φ-Means of Fourier Series”, Mat. Zametki, 80:1 (2006), 50–59; Math. Notes, 80:1 (2006), 47–56
Citation in format AMSBIB
\Bibitem{Kar06}
\by G.~A.~Karagulian
\paper Everywhere Divergent
$\Phi$-Means of Fourier Series
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 50--59
\mathnet{http://mi.mathnet.ru/mzm2779}
\crossref{https://doi.org/10.4213/mzm2779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280737}
\zmath{https://zbmath.org/?q=an:1120.42005}
\elib{https://elibrary.ru/item.asp?id=9281622}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 47--56
\crossref{https://doi.org/10.1007/s11006-006-0107-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747515684}
Linking options:
  • https://www.mathnet.ru/eng/mzm2779
  • https://doi.org/10.4213/mzm2779
  • https://www.mathnet.ru/eng/mzm/v80/i1/p50
  • This publication is cited in the following 12 articles:
    1. Lars-Erik Persson, George Tephnadze, Ferenc Weisz, Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series, 2022, 71  crossref
    2. Goginava U., “Almost Everywhere Strong C,1,0 Summability of 2-Dimensional Trigonometric Fourier Series”, Indian J. Pure Appl. Math., 51:3 (2020), 1181–1194  crossref  mathscinet  isi
    3. Goginava U., “Almost Everywhere Strong Summability of Fej,R Means of Rectangular Partial Sums of Two-Dimensional Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 53:2 (2018), 100–112  crossref  mathscinet  isi
    4. U. Goginava, G. Karagulian, “On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series”, Math. Notes, 104:5 (2018), 655–665  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Goginava U., “Almost Everywhere Convergence of Strong Norlund Logarithmic Means of Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 53:5 (2018), 281–287  crossref  mathscinet  zmath  isi  scopus
    6. Goginava U., “Almost Everywhere Strong Summability of Cubic Partial Sums of D-Dimensional Walsh-Fourier Series”, Math. Inequal. Appl., 20:4 (2017), 1051–1066  crossref  mathscinet  zmath  isi  scopus
    7. Gat G. Goginava U., “Almost Everywhere Strong Summability of Double Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 50:1 (2015), 1–13  crossref  mathscinet  zmath  isi  scopus
    8. Gat G., Goginava U., Karagulyan G., “On Everywhere Divergence of the Strong Phi-Means of Walsh-Fourier Series”, J. Math. Anal. Appl., 421:1 (2015), 206–214  crossref  mathscinet  zmath  isi  scopus
    9. Wilson B., “on Almost Everywhere Convergence of Strong Arithmetic Means of Fourier Series”, Trans. Am. Math. Soc., 367:2 (2015), 1467–1500  crossref  mathscinet  zmath  isi  scopus
    10. Gat G. Goginava U. Karagulyan G., “Almost Everywhere Strong Summability of Marcinkiewicz Means of Double Walsh-Fourier Series”, Anal. Math., 40:4 (2014), 243–266  crossref  mathscinet  zmath  isi  scopus
    11. Goginava U. Gogoladze L. Karagulyan G., “Bmo-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series”, Constr. Approx., 40:1 (2014), 105–120  crossref  mathscinet  zmath  isi  scopus
    12. G. Gát, U. Goginava, G. Karagulyan, “A remark on the divergence of strong power means of Walsh-Fourier series”, Math Notes, 96:5-6 (2014), 897  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:601
    Full-text PDF :252
    References:111
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025