Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 1, Pages 50–59
DOI: https://doi.org/10.4213/mzm2779
(Mi mzm2779)
 

This article is cited in 12 scientific papers (total in 12 papers)

Everywhere Divergent $\Phi$-Means of Fourier Series

G. A. Karagulian

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: For a function $f\in L^1({\mathbb T})$, we investigate the sequence $(C,1)$ of mean values $\Phi(|S_k(x,f)-f(x)|)$, where $\Phi (t)\colon [0,+\infty)\to [0,+\nobreak \infty)$, $\Phi (0)=\nobreak 0$, is a continuous increasing function. We prove that if $\Phi $ increases faster than exponentially, then these means can diverge everywhere. Divergence almost everywhere of such means was established earlier.
Keywords: Fourier series, means of Fourier series, the space $L^1({\mathbf T})$.
Received: 28.04.2005
Revised: 07.10.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 1, Pages 47–56
DOI: https://doi.org/10.1007/s11006-006-0107-6
Bibliographic databases:
UDC: 517
Language: Russian
Citation: G. A. Karagulian, “Everywhere Divergent $\Phi$-Means of Fourier Series”, Mat. Zametki, 80:1 (2006), 50–59; Math. Notes, 80:1 (2006), 47–56
Citation in format AMSBIB
\Bibitem{Kar06}
\by G.~A.~Karagulian
\paper Everywhere Divergent
$\Phi$-Means of Fourier Series
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 50--59
\mathnet{http://mi.mathnet.ru/mzm2779}
\crossref{https://doi.org/10.4213/mzm2779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280737}
\zmath{https://zbmath.org/?q=an:1120.42005}
\elib{https://elibrary.ru/item.asp?id=9281622}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 47--56
\crossref{https://doi.org/10.1007/s11006-006-0107-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747515684}
Linking options:
  • https://www.mathnet.ru/eng/mzm2779
  • https://doi.org/10.4213/mzm2779
  • https://www.mathnet.ru/eng/mzm/v80/i1/p50
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:551
    Full-text PDF :237
    References:96
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024