Abstract:
We consider
the question of evaluating the normalizing multiplier
γn,k=1π∫π−π(sinnt2sint2)2kdt
for the generalized Jackson kernel
Jn,k(t). We obtain the explicit formula
γn,k=2[k−kn]∑p=0(−1)p(2kp)(k(n+1)−np−1k(n−1)−np)
and the representation
γn,k=√24π⋅(n−1)2k−1√2k−1[1−18⋅12k−1+ω(n,k)],
where
|ω(n,k)|<4(2k−1)√ln(2k−1)+√12π⋅k32n−1(1+1n−1)2k−2.
Keywords:
approximation theory, generalized Jackson kernel.
Citation:
M. S. Viazovskaya, N. S. Pupashenko, “On the Normalizing Multiplier of the Generalized Jackson Kernel”, Mat. Zametki, 80:1 (2006), 20–28; Math. Notes, 80:1 (2006), 19–26
\Bibitem{ViaPup06}
\by M.~S.~Viazovskaya, N.~S.~Pupashenko
\paper On the Normalizing Multiplier of the Generalized Jackson Kernel
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 20--28
\mathnet{http://mi.mathnet.ru/mzm2775}
\crossref{https://doi.org/10.4213/mzm2775}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280733}
\zmath{https://zbmath.org/?q=an:1126.41001}
\elib{https://elibrary.ru/item.asp?id=9281587}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 19--26
\crossref{https://doi.org/10.1007/s11006-006-0103-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747456354}
Linking options:
https://www.mathnet.ru/eng/mzm2775
https://doi.org/10.4213/mzm2775
https://www.mathnet.ru/eng/mzm/v80/i1/p20
This publication is cited in the following 3 articles:
D. Leviatan, O. V. Motorna, I. A. Shevchuk, “Fast Decreasing Trigonometric Polynomials and Applications”, J Fourier Anal Appl, 30:3 (2024)
D. Leviatan, I. A. Shevchuk, “Coconvex Approximation of Periodic Functions”, Constr Approx, 57:2 (2023), 695
Wang Z., Jin Ch., Fan K., Zhang J., Huang J., Zhong Y., Wang L., “Differentially Private Data Releasing For Smooth Queries”, J. Mach. Learn. Res., 17 (2016), 1–42