|
This article is cited in 3 scientific papers (total in 3 papers)
On the Normalizing Multiplier of the Generalized Jackson Kernel
M. S. Viazovskaya, N. S. Pupashenko National Taras Shevchenko University of Kyiv
Abstract:
We consider
the question of evaluating the normalizing multiplier
$$
\gamma_{n,k} = \frac1 \pi \int_{-\pi}^\pi
{\biggl(\frac{\sin\frac{n t}2}{\sin\frac t 2}\biggr)}^{2k}\,dt
$$
for the generalized Jackson kernel
$J_{n,k}(t)$. We obtain the explicit formula
$$
\gamma_{n,k} = 2 \sum_{p=0}^{[k-\frac k n]} (-1)^p
\binom{2k}p
\binom{k(n+1) - np - 1}{k(n-1) - np}
$$
and the representation
$$
\gamma_{n,k} = \sqrt{\frac{24}{\pi}}\cdot\frac
{(n-1)^{2k-1}}{\sqrt{2k-1}}\left[ 1 - \frac
1{8}\cdot\frac{1}{2k-1} + \omega(n,k)\right],
$$
where
$$
|{\omega(n,k)}|<\frac{4}{(2k-1)\sqrt{\ln(2k-1)}}+
\sqrt{12\pi}\cdot\frac{k^\frac{3}{2}}{n-1}\left(1+
\frac{1}{n-1}\right)^{2k-2}.
$$
Keywords:
approximation theory, generalized Jackson kernel.
Received: 28.09.2005 Revised: 30.01.2006
Citation:
M. S. Viazovskaya, N. S. Pupashenko, “On the Normalizing Multiplier of the Generalized Jackson Kernel”, Mat. Zametki, 80:1 (2006), 20–28; Math. Notes, 80:1 (2006), 19–26
Linking options:
https://www.mathnet.ru/eng/mzm2775https://doi.org/10.4213/mzm2775 https://www.mathnet.ru/eng/mzm/v80/i1/p20
|
Statistics & downloads: |
Abstract page: | 529 | Full-text PDF : | 250 | References: | 74 | First page: | 2 |
|