Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 6, Pages 931–940
DOI: https://doi.org/10.4213/mzm2766
(Mi mzm2766)
 

This article is cited in 1 scientific paper (total in 1 paper)

Continuation of separately analytic functions defined on part of a domain boundary

A. S. Sadullaev, S. A. Imomkulov

Al-Kharezmi Urgench State University, Khorezm, Uzbekistan
Full-text PDF (260 kB) Citations (1)
References:
Abstract: Suppose that $D\subset\mathbb C^n$ is a domain with smooth boundary $\partial D$, $E\subset\partial D$ is a boundary subset of positive Lebesgue measure $\operatorname{mes}(E)>0$, and $F\subset G$ is a nonpluripolar compact set in a strongly pseudoconvex domain $G\subset\mathbb C^m$. We prove that, under some additional conditions, each function separately analytic on the set $X=(D\times F)\cup(E\times G)$ can be holomorphically continued into the domain $\widehat X=\{(z,w)\in D\times G:\omega_{\textup{in}}^*(z,E,D)+\omega^*(w,F,G)<1\}$, where $\omega^*$ is the $P$-measure and $\omega^*_{\textup{in}}$ is the inner $P$-measure.
Received: 04.04.2005
English version:
Mathematical Notes, 2006, Volume 79, Issue 6, Pages 869–877
DOI: https://doi.org/10.1007/s11006-006-0098-3
Bibliographic databases:
UDC: 517.55
Language: Russian
Citation: A. S. Sadullaev, S. A. Imomkulov, “Continuation of separately analytic functions defined on part of a domain boundary”, Mat. Zametki, 79:6 (2006), 931–940; Math. Notes, 79:6 (2006), 869–877
Citation in format AMSBIB
\Bibitem{SadImo06}
\by A.~S.~Sadullaev, S.~A.~Imomkulov
\paper Continuation of separately analytic functions defined on part of a~domain boundary
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 6
\pages 931--940
\mathnet{http://mi.mathnet.ru/mzm2766}
\crossref{https://doi.org/10.4213/mzm2766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2261247}
\zmath{https://zbmath.org/?q=an:1133.32004}
\elib{https://elibrary.ru/item.asp?id=9293150}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 6
\pages 869--877
\crossref{https://doi.org/10.1007/s11006-006-0098-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238504700031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747825943}
Linking options:
  • https://www.mathnet.ru/eng/mzm2766
  • https://doi.org/10.4213/mzm2766
  • https://www.mathnet.ru/eng/mzm/v79/i6/p931
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :185
    References:61
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024