|
On prime numbers of special kind on short intervals
N. N. Mot'kina Belgorod State University
Abstract:
Suppose that the Riemann hypothesis holds. Suppose that
$$
\psi_1(x)=\sum_{\substack{n\le x\\ \{(1/2)n^{1/c}\}<1/2}}\Lambda(n),
$$
where $c$ is a real number, $1<c\le 2$. We prove that, for $H>N^{1/2+10\varepsilon}$, $\varepsilon>0$, the following asymptotic formula is valid:
$$
\psi_1(N+H)-\psi_1(N)=\frac H2\biggl(1+O\biggl(\frac1{N^\varepsilon}\biggr)\biggr).
$$
Received: 07.06.2005 Revised: 15.11.2005
Citation:
N. N. Mot'kina, “On prime numbers of special kind on short intervals”, Mat. Zametki, 79:6 (2006), 908–912; Math. Notes, 79:6 (2006), 848–853
Linking options:
https://www.mathnet.ru/eng/mzm2763https://doi.org/10.4213/mzm2763 https://www.mathnet.ru/eng/mzm/v79/i6/p908
|
Statistics & downloads: |
Abstract page: | 307 | Full-text PDF : | 189 | References: | 45 | First page: | 2 |
|