Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 5, Pages 756–766
DOI: https://doi.org/10.4213/mzm2747
(Mi mzm2747)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximations by convolutions and antiderivatives

A. M. Sedletskii

M. V. Lomonosov Moscow State University
Full-text PDF (242 kB) Citations (1)
References:
Abstract: Let $g$ be a given function in $L^1=L^1(0,1)$, and let $B$ be one of the spaces $L^p(0,1)$, $1\le p<\infty$, or $C_0[0,1]$. We prove that the set of all convolutions $f*g$, $f\in B$, is dense in $B$ if and only if $g$ is nontrivial in an arbitrary right neighborhood of zero. Under an additional restriction on $g$, we prove the equivalence in $B$ of the systems $f_n*g$ and $If_n$, where $f_n\in L^1$, $n\in\mathbb N$, and $If=f*1$ is the antiderivative of $f$. As a consequence, we obtain criteria for the completeness and basis property in $B$ of subsystems of antiderivatives of $g$.
Received: 29.12.2004
English version:
Mathematical Notes, 2006, Volume 79, Issue 5, Pages 697–706
DOI: https://doi.org/10.1007/s11006-006-0079-6
Bibliographic databases:
UDC: 517.518.32
Language: Russian
Citation: A. M. Sedletskii, “Approximations by convolutions and antiderivatives”, Mat. Zametki, 79:5 (2006), 756–766; Math. Notes, 79:5 (2006), 697–706
Citation in format AMSBIB
\Bibitem{Sed06}
\by A.~M.~Sedletskii
\paper Approximations by convolutions and antiderivatives
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 5
\pages 756--766
\mathnet{http://mi.mathnet.ru/mzm2747}
\crossref{https://doi.org/10.4213/mzm2747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249133}
\zmath{https://zbmath.org/?q=an:1136.42300}
\elib{https://elibrary.ru/item.asp?id=9198915}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 5
\pages 697--706
\crossref{https://doi.org/10.1007/s11006-006-0079-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238504700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747859294}
Linking options:
  • https://www.mathnet.ru/eng/mzm2747
  • https://doi.org/10.4213/mzm2747
  • https://www.mathnet.ru/eng/mzm/v79/i5/p756
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :263
    References:57
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024