Abstract:
Gas dynamics equations have an isentropic solution describing the radial rectilinear motion of particles to the center and from the center with constant velocities. Two such solutions can be continuously conjugated if the Goursat problem is solved in a spatially similar domain with matched data on the characteristics. We prove the existence and uniqueness of a smooth solution of the Goursat problem in a small ball for a polytropic gas with exponent 5/3.
Citation:
S. V. Khabirov, “Goursat problem of the continuous conjugation of radial rectilinear motions of a gas”, Mat. Zametki, 79:4 (2006), 601–606; Math. Notes, 79:4 (2006), 555–560
\Bibitem{Kha06}
\by S.~V.~Khabirov
\paper Goursat problem of the continuous conjugation of radial rectilinear motions of a~gas
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 4
\pages 601--606
\mathnet{http://mi.mathnet.ru/mzm2730}
\crossref{https://doi.org/10.4213/mzm2730}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251309}
\zmath{https://zbmath.org/?q=an:1111.76044}
\elib{https://elibrary.ru/item.asp?id=9210531}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 4
\pages 555--560
\crossref{https://doi.org/10.1007/s11006-006-0062-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645996725}
Linking options:
https://www.mathnet.ru/eng/mzm2730
https://doi.org/10.4213/mzm2730
https://www.mathnet.ru/eng/mzm/v79/i4/p601
This publication is cited in the following 4 articles:
S. V. Khabirov, “Dvizhenie chastits gaza, postroennoe po gruppe Galileya”, Tr. IMM UrO RAN, 27, no. 1, 2021, 173–187
S. V. Khabirov, “Invariantnye dvizheniya chastits obschei trekhmernoi podgruppy gruppy vsekh prostranstvennykh perenosov”, Chelyab. fiz.-matem. zhurn., 5:4(1) (2020), 400–414
A. V. Panov, “Exact solutions to the equations of the dynamics of a two-phase medium. Collapse of a gas and particles in space”, J. Appl. Industr. Math., 11:2 (2017), 263–273
A. R. Garifullin, S. V. Khabirov, “Continuous conjugation of special nonisentropic one-dimensional gas motions”, Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S77–S86